The Ultimate ABGs Blood Gas Guide you Need to Calm Your Nerves

The Ultimate ABGs Blood Gas Guide you Need to Calm Your Nerves

William J. Kelly, MSN, FNP-C
William J. Kelly, MSN, FNP-C

Author | Nurse Practitioner

This ultimate ABGs Blood gas guide is exactly what you’ve been looking for to understand Arterial Blood Gases! ABGs are used frequently in the ER and ICU settings, and many critical patients will need their blood gases monitored frequently.

Featured Image for ABGs blood gas interpretation guide for nurses

What Are ABGs or a Blood Gas?

ABGs, or an Arterial Blood Gas, is a blood sample that is taken from an artery in the wrist. This is different than normal blood work, which is taken from the veins of the arms. The arterial blood sample is obtained by a respiratory therapist or a critical care nurse.

Arterial samples provide better indicators of oxygen and carbon dioxide levels, but ABGs also look at acidity and bicarbonate levels within the blood.

A blood gas is used to look at acid-base disturbances and/or to evaluate the adequacy of oxygenation/ventilation. When an ABG blood gas is ordered, 4 contents of the arterial blood are tested:

  • Oxygen Levels: This measures PaO2 as well as SaO2
  • Carbon Dioxide levels: PaCO2 levels
  • pH: the acidity of the blood
  • Bicarbonate: The amount of bicarb, which is a buffer

Oxygen (O2) and carbon dioxide (CO2) are the main gases within the blood, and these are measured in blood gas. However, ABGs also provide levels of blood pH and Bicarb.

Of all of the measurements, the most important levels to look at are the CO2, the Bicarb, and the pH in determining acid-base balance.

When are ABGs ordered?

ABGs are very useful in evaluating acid-base disturbances, as well as ventilation/oxygenation disturbances. The patients who are ordered ABGs are often sick – usually ICU bound. The most common patients who might have a blood draw include:

  • Acute Respiratory Failure
  • Already Ventilated Patients
  • COPD/CHF with altered mental status
  • Diabetic ketoacidosis (often may have a VBG instead)

Things to keep in Mind with ABGs

There are some important factors to keep in mind when thinking about ABGs and interpreting them.

Things Aren't Always Simple

Patients can have mixed acid-base disturbances, which can make it confusing. That’s why the interpretation is ultimately best left up to the critical care physicians and other Providers within their care.


Remember the body is always trying to maintain homeostasis. The respiratory system will attempt to compensate for the metabolic system and vice versa.

Underlying Cause

Always focus on treating the underlying cause.

THE ABGs: Blood Gas Measurements

Okay, so lets dive a little deeper into what each measurement is on the ABG results, and what their levels mean.

The pH

pH is the “potential of Hydrogen”, which measures how acidic a solution is. The more hydrogen ions present in a solution, the more acidic it is. 

  • Normal pH of blood: 7.35-7.45
  • Low pH (<7.35): Indicates acidosis, and is termed acidemia
  • High pH (>7.45): Indicates alkalosis (metabolic or respiratory), and is termed alkalemia

pH may be normal or near-normal in chronic acid-base disturbances from compensation, or the patient can have multiple different acid-base disturbances going on at once.

The PaCO2

The PaCO2 is the partial pressure of Carbon Dioxide within the arterial blood. Essentially this is just a measure of the amount of carbon dioxide gas within the blood.

Remember that the lungs breathe in oxygen, deliver the oxygen to the cells, and the cells use that oxygen to create energy. To create energy (ATP), the cells utilize the Kreb’s Cycle, and a byproduct of that cycle is carbon dioxide. That CO2 is then breathed out when you exhale.

CO2 isn’t acidic by itself, but in the blood forms something called carbonic acid, which is acidic. Breathing out less CO2 will cause acidosis, and breathing out too much CO2 can cause alkalosis.

IF THE PaCO2 AND the pH are both high, think RESPIRATORY ACIDOSIS.

  • Normal: 35-45 mmHg
  • Elevated: >45 mmHg, termed hypercapnia
  • Decreased: <35 mmHg, termed hypocapnia

My Blood is BOILING

When you hold your breath, eventually you need to breathe again because it feels like your blood is boiling. This always helped me remember that when you aren’t breathing enough, the CO2 makes it boil – aka acidosis!

The HCO3 (Bicarb)

HCO3 on an ABG blood gas is the serum bicarb levels within the arterial blood. Bicarb acts as a buffer to make acidity less acidic. Think of it as the opposite of hydrogen ions. The less bicarb there is, the more acidic the blood is. To get technical, Bicarb reacts with H+ to form carbonic acid, which the body breaks down into CO2 and water – which it breaths out.

  • Normal: Between 22-26 mEq/L
  • Elevated: >26 mEq/L, associated with metabolic alkalosis
  • Decreased: <22 mEq/L (associated with metabolic acidosis)

The PaO2

PaO2 is the partial pressure of oxygen within arterial blood. This basically measures the actual oxygen blood gas content.

  • Normal: > 80 mmHg
  • Elevated: > 100 mmHg, usually due to over-oxygenation
  • Decreased: <80 mmHg, associated with respiratory failure, although could be from severe anemia as well

Oxygen Toxicity

Don’t forget that too much oxygen can be bad too. Oxygen toxicity can produce reactive oxygen species and cause cellular injury, inflammation, and cell death. It can also worsen hypercapnia like in patients with COPD.

The SaO2

The SaO2 is the peripheral oxygenation, which is equivalent to the Pulse Ox reading.

  • Normal: Above 94-96%
  • Decreased: <90-92%


When interpreting ABGs and blood gases, there are 4 general categories we use:

  • Respiratory Acidosis
  • Respiratory Alkalosis
  • Metabolic Acidosis
  • Metabolic Alkalosis

Using these categories, we can better understand what the possible underlying cause of the acid-base disturbance is!

Don’t forget someone can have multiple acid-base disturbances going on at one time, and this makes clinical interpretation difficult – everything is not black and white in medicine, but this should give you a pretty good idea of what may be causing your patient’s acid-base disturbance.


Respiratory acidosis is due to alveolar hypoventilation. The lungs are NOT able to remove enough carbon dioxide quickly enough, so CO2 and Hydrogen build up in the blood.

High CO2 tends to occur late in the lung disease or when respiratory muscles are fatigued – this is usually seen in severe respiratory failure. The acidosis can be acute or chronic.

This classically can happen to patients with COPD because they are less responsive to hypoxia and hypocapnia. There is also increased dead-space ventilation and decreased diaphragmatic function due to fatigue and hyperinflation.

Acute Respiratory Acidosis

Acute respiratory acidosis could be from multiple different reasons including:

  • Respiratory Failure & Airway Obstruction: Severe asthma, COPD, CHF
  • CNS disease: Stroke, Traumatic brain injury
  • Drug-induced: Opioid or benzodiazepine overdose
  • Neuromuscular Disease: Myasthenia Gravis, ALS, Guillan Barre)

Chronic Respiratory Acidosis

Chronic respiratory acidosis may occur when the PaCO2 is elevated, but the pH remains normal or near-normal because the body adjusts (metabolic compensation). Causes of chronic respiratory acidosis include: be Obesity-Hypoventilation syndrome (Pickwickian syndrome), ALS, interstitial fibrosis, and thoracic skeletal deformities.

  • COPD with Chronic CO2 retention
  • Obesity-hypoventilation Syndrome: Also called Pickwickian syndrome
  • Others: ALS, Interstitial fibrosis, thoracic skeletal deformities

COPD & Oxygen

When your patient with COPD is on a lot of oxygen, there is always a risk of hypoventilation and CO2 retention. This is the classic patient you should be thinking about with respiratory acidosis.

The treatment for respiratory acidosis is treating the underlying cause (i.e. giving Narcan to someone who overdosed on opioids), but more often than not the treatment is BIPAP or Intubation.


This acid-base disturbance is due to alveolar hyperventilation. The lungs remove too much carbon dioxide too quickly, so hypocapnia (low PaCO2) and alkalosis occur.

It is commonly found in those who are critically ill, but can be found in various other conditions such as:

Ventilated Patients

The settings on the ventilator could be incorrect, and the patient may have a rate that is too fast


Patients experiencing panic attacks, severe anxiety, or psychosis can experience respiratory alkalosis. However, the patient’s with panic attacks almost never have ABGs ordered (it’s unnecessary)

Early-Intermediate Lung Disease

Pneumonia, pneumothorax, pulmonary embolism, asthma, bronchitis. This is more the increased respiratory rate compensating for the disease, but eventually, these issues can cause respiratory acidosis instead

Numbness & Tingling with Hyperventilation

Acute low CO2 levels lead to potassium and phosphorus shifting into the cells and cause calcium to increase its binding to albumin. This can cause temporary symptoms such as numbness/tingling in extremities that many patients may experience with acute panic attacks!

The treatment for respiratory alkalosis is treating the underlying cause, such as adjusting ventilator settings, administering anxiolytics, etc. 

Metabolic Acidosis

A bicarb level <22 mEq/L in addition to a pH <7.35 is metabolic acidosis. This acid-base disturbance is due to increased plasma acidity. Metabolic Acidosis is further broken down into whether or not the Anion Gap is normal or elevated.

Severe HCO3 levels <12 are almost always caused by some degree of metabolic acidosis, instead of just compensation for respiratory alkalosis.

Normal Gap Metabolic Acidosis

This type of metabolic acidosis usually has high chloride. This is when Bicarbonate is lost within the GI tract or kidneys (is peed or pooped out). This can be caused by:


Diarrhea can cause loss of Bicarb within the stool but tends to save chloride, which does not increase the anion gap.

Chronic Renal Failure

Typically when GFR is between 20-50ml/min

Renal Tubular Acidosis

In RTA, the kidneys do not remove acid from the blood like they should

Large-Volume Fluid Replacement

Replacing large volumes of NS can cause a modest metabolic acidosis that is termed dilutional acidosis. This can worsen kidney injury. Using Lactated Ringers is a possible benefit to this, as the lactate is used as a buffer.

Elevated Gap Metabolic Acidosis

The anion gap is the difference between the positive ions in the blood (sodium), and the negative ions in the blood (chloride, bicarb, lactic acid, ketones, etc). Common causes of elevated gap metabolic acidosis include:

    Diabetic Ketoacidosis

    DKA causes a massive increase of ketone bodies which are acidic, in addition to severe dehydration

    Lactic Acidosis

    Lactic acidosis, especially in setting of sepsis, can cause metabolic acidosis

    Acute Kidney Injury

    Injury to the kidneys can cause a decreased ability to excrete hydrogen ions as well as the ability to increase bicarb levels to help buffer the acidosis

    Ingestion of certain Poisons

    Certain substances are toxic and can cause metabolic acidosis including alcohols, salicylates, cyanide, and carbon monoxide

    The treatment of metabolic acidosis is to correct the underlying issue causing the acidosis in the first place. Bicarb drips can be used in severe cases of acidosis (pH < 7.1 or 7.2).  


    This acid-base disturbance is caused by increased serum bicarb and decreased acidity. Bicarb levels >35 mEq/L are almost always caused by some degree of metabolic alkalosis as opposed to just compensation.

    For metabolic alkalosis, the acidity or hydrogen ions (H+) are usually lost in some manner, either through the GI tract or the kidneys:

    Excessive Vomiting

    Gastric secretion has a high content of hydrogen ions, so excessive vomiting can reduce overall acidity within the body

    NG Tube

    Over time, NG tubes remove a lot of gastric fluid, similar to excessive vomiting, this can cause a decrease in hydrogen ions

    Alkalotic overdose

    Rare, but if you consume massive amounts of milk products or antacids this can cause metabolic alkalosis

    Renal Losses

    The use of certain diuretics or mineralocorticoid excess, and some other rare disorders can cause the kidneys to pee out too many hydrogen ions.


    It always helps to have a systematic approach when interpreting ABGs, as blood gasses can be somewhat confusing if you miss a step!

    Determine the pH

    First, see whether or not the patient is acidic (pH <7.35), or alkalotic (pH >7.45). This will tell you if there is an acute acid-base disturbance going on.

    PCO2 + HCO3 Abnormalities

    See which levels are abnormal. Are they leaning acidic or alkalotic?  

    Correlate with pH

    See which one (CO2 or HCO3) correlates with pH. For example, if the pH is 7.2 (acidic), which abnormality is also leaning towards acidity? If CO2 was 56 and HCO3 was 30, the CO2 correlates with the pH because both are acidic.

    Determine Compensation

    Now check the level that doesn’t correlate with the pH. Is this also abnormal but in the opposite direction? If so this is termed compensation. If the pH is abnormal, it is only partial compensation. 

    Check the Anion Gap

    This step is optional and done if there is metabolic acidosis. This will help give you a better idea of which type of acidosis it is. If it is high, think of kidney failure, sepsis, or DKA. If it is low, think severe diarrhea. 


    Emmett, M., & Szerlip, H. (2022). Approach to the adult with metabolic acidosis. In T. W. Post (Ed.), Uptodate.

    Emmett, M., & Szerlip, H. (2022). Causes of metabolic alkalosis. In T. W. Post (Ed.), Uptodate.

    Hopkins, E., Sanvictores, T., & Sharma, S. (2020, September 14). Physiology, Acid Base Balance. National Library of Medicine.

    Sood, P., Paul, G., & Puri, S. (2010). Interpretation of arterial blood gas. Indian J Crit Care Med, 14(2), 57-64.

    Theodore, A. C. (2022). Arterial blood gases. In Uptodate.

    William Kelly, MSN, FNP-C

    Will is a Nurse Practitioner who is the founder and author of Health and Willness, an online educational platform to build clinical knowledge and skills of nurses and nurse practitioners!


    AFIB RVR on EKG: Management of Atrial Fibrillation

    AFIB RVR on EKG: Management of Atrial Fibrillation

    William J. Kelly, MSN, FNP-C
    William J. Kelly, MSN, FNP-C

    Author | Nurse Practitioner

    Atrial Fibrillation (AFIB) and AFIB RVR are common conditions that you’ll see as a nurse within both inpatient and outpatient settings. These patients are often asymptomatic, but may have severe symptoms and even be unstable, especially with AFIB RVR.

    Recognizing AFIB on the monitor/EKG and knowing how to treat it is important as the nurse, as you’ll be on the front line with these patients!

    AFIB RVR Atrial Fibrillation Featured Image-min

    What is Atrial Fibrillation (AFIB)?

    Atrial Fibrillation (AF or AFIB) is an “irregularly irregular” arrhythmia that usually occurs in a structurally diseased heart.

    AFIB occurs when too many atrial impulses are usually coming from the pulmonary veins, causing rapid fibrillation or “quivering” of both the left and right atria.

    Remember, the heart has four chambers: left and right atria on the top and left and right ventricle on the bottom. With AFIB, the top chambers are in a constant state of fibrillation.

    During a normal heartbeat, the atria first contract, pushing blood into the ventricles, and the ventricles then pump the blood to the rest of the body. In AFIB, the atria lose this “atrial kick,” leading to ineffective atrial filling and decreased cardiac output, especially at rapid rates.

    Cardiac Conduction Review

    It is helpful to remember how the cardiac conductions system works to understand what is going on with AFIB.

    Remember, the heart has specific electrical conduction tissue, which creates and moves the electrical signal throughout the heart to produce an organized rhythm. This organization lets the heart fill and pump effectively.

    Cardiac Conduction System: AFIB RVRThe heart’s pacemaker is the sinus node located in the right atrium. This region of cells creates the “normal” impulse and sends it throughout the atria and then through the AV node. This AV node normally slows the conduction to allow for ventricular filling. The PR interval on the EKG denotes this slowing of the conduction.

    Once traveling through the AV node, the impulse goes through the Bundle of His. It splits down the left and right bundle branches towards each ventricle, then through the Purkinje fibers and eventually the ventricles, causing a heartbeat.

    In AFIB, rapid-firing comes from the atria, usually where the pulmonary veins meet the left atria. This leads to the quivering of both atria and ineffective atrial filling and atrial kick.

    While the AV node does slow down conduction, it can only do so much on its own. With such rapid firing from the atria, many of these impulses want to make it down to the ventricles and cause heartbeats.

    As you can imagine, this can lead to very fast heart rates – what we call AFIB RVR or rapid ventricular response.

    What is AFIB RVR?

    AFIB RVR (Rapid Ventricular Response) occurs due to the frequent electrical impulses from the atria.

    The AV node is only able to slow the frequent electrical impulses down so much, so many of the impulses are conducted through to the ventricles, leading to a rapid ventricular response or a fast heart rate >100bpm and often much faster.

    Patients with these fast rates are often symptomatic and may become hypotensive. These patients will usually require IV medications to slow down their rate, and possibly even electrical cardioversion (more on that later!).

    What causes AFIB?

    AFIB usually occurs in predisposed hearts and is often set off by reversible triggers.

    Chronic diseases which predispose the heart to AFIB include:

    Atrial Enlargement

    Anything causing atrial enlargement such as CHF, Cardiomyopathy, COPD, OSA, obesity

    Valvular Heart Disease

    Rheumatic Fever, aortic stenosis, valve repelacements, etc

    Ischemic Heart Disease

    Coronary artery disease, past or current myocardial infarctions (heart attacks!)

    Usually, some reversible trigger throws the patient into AFIB. These reversible triggers include:

    Surgical Procedures

    CABG or heart transplants, usually within the first 2 weeks postop

    Pulmonary Emblolisms

    PEs can cause right atrial heart strain and Increased pulmonary vascular resistance


    Alcoholics and binge-drinking can cause Holiday Heart syndrome, which can occur in 60% of binge drinkers


    Cocaine and amphetamines can increase sympathetic tone and leave the heart predisposed to arrhythmias such as AFIB


    Hyperthyroidism (low TSH) can cause increased sympathetic tone and lead to arrhythmias


    Low magnesium levels can lead to AFIB, generally levels < 1.5 (check this).


    Certain medications can trigger AFIB including Theophylline and adenosine.


    Although caffeine is often thought of as contributory to ectopy and AFIB, there is no direct evidence it does trigger AF. However, it is something to consider.

    Nursing Assessment of AFIB RVR

    Symptoms of AFIB

    Up to 44% of patients with Afib are asymptomatic. Patients with faster rates are more likely to develop symptoms, and those with CHF are more likely to experience hemodynamic instability and severe symptoms (aka low BP and possible code situation).

    Some symptoms of AFIB can include:


    Most common complaint


    Shortness of breath




    Dizziness or lightheadedness


    Fluttering or skipping in their chest, or possibly just feeling their heart pounding

    Chest Pain

    Chest pressure, pain, or discomfort


    Loss of consciousness

    The Physical Exam


    • Pallor or flushed
    • Diaphoresis
      • May appear tachypneic

      Vital Signs

      • BP: May be low at fast rates and with poor cardiac output
      • Pulse/HR: Often >100 (RVR)
      • Respirations: Normal or increased
      • SPO2: Usually normal


      • Lungs
        • Usually Normal
        • May have crackles if CHF
      • Heart
        • Rapid and irregular rate

      Identifying AFIB RVR on the ECG

      Atrial fibrillation (AFIB RVR)

      AFIB will NOT have visible P waves. Instead, there will be a fibrillatory baseline. There is no depolarization wave throughout the atria, but rather rapid twitching and many “small” depolarizations, firing at rates 350-600 times per minute.

      The QRS complex should be narrow unless an underlying intraventricular conduction delay is present, such as a bundle branch block.

      The T waves may be difficult to decipher between the F-wave baseline completely. T wave abnormalities are common, including T wave flattening.

      AFIB is irregularly irregular. This means that the R-R interval is continuously changing, and there is no pattern.

      AFIB can be at any rate, but faster than 100 is considered AFIB RVR. Without medications to slow it down, rates are usually between 90-170 bpm.

      AFIB: Atrial Fibrillation Notes

      Initial Nursing Interventions

      STAT EKG

      Any patient with cardiac symptoms should get an EKG.

      Patients with new AFIB should have a 12-lead EKG to confirm the diagnosis.

      If the patient is at significant fast rates, keep them hooked up to grab another one once the rate improves or the patient converts.

      Cardiac Monitoring

      Patients with any cardiac symptoms should be placed on the cardiac monitor.

      Those patients with a history of AFIB with normal rates does not necessarily need a cardiac monitor.

      Oxygen Support

      If the patient is significantly hypoxic or tachypneic, apply 2-4 L/min NC to maintain SPO2 >90%.

      IV Access

      Start two peripheral IVs at least 22g, but preferably one at least 20g. If they are in AFIB RVR, they will likely need an IV Cardizem drip and IV heparin in separate lines.

      If there is a concern for pulmonary embolism or embolic stroke, make sure to place an 18-20g in the AC.

      While drawing blood, make sure to draw a blue top as PT/INR, PTT, and a D-dimer may be ordered.

      Unstable Tachyarrhythmia

      Remember that any unstable tachyarrhythmia should follow ACLS guidelines. This means the patient may need electrically cardioverted. If they are unstable (Low BP, impending arrest), then place the defibrillation pads on the patient and hook them up to the defibrillator.

      Workup for AFIB RVR

      The workup will depend if the patient is in new-onset AF or already has chronic AF and if they are in RVR or not.

      Patients with a known history of AFIB who have controlled rates don’t need any specific testing. They are usually on chronic medications to control their heart rates and anticoagulants to prevent blood clots.

      Patients with new AFIB or AFIB RVR require more extensive testing, and the workup may depend on their symptoms.

      General workup for new AFIB includes:

      12-lead ECG

      AFIB can be diagnosed with this, as well as to look for any other abnormalities such as a STEMI

      Basic Labs

      CBC, CMP, and magnesium will often be checked

      Additional Labs

      Coag studies such as PT/INR and PTT, BNP if s/s of heart failure, digoxin level if patient is taking, and a D-dimer may be ordered as well


      If they have any cardiac or pulmonary complaints this should be obtained


      If there is suspicion of a PE. It May also detect atrial thrombi but is not very sensitive

      CT head

      If any altered mental status or stroke-like s/s

      Complications of AFIB

      So why do we even care about AFIB? Well, there can be disastrous consequences if we do not treat it appropriately.

      Unstable Symptoms

      Patients with AFIB have an inadequate atrial filling of blood, as well a loss of the atrial kick which pushes blood from the atria to the ventricles. This decreases cardiac output. When the ventricles have a rapid response, these insufficiencies worsen and can lead to hemodynamic compromise – hypotension, hypoxemia, and eventually cardiac arrest.

      Worsened CHF

      Patients with Left ventricular dysfunction (aka CHF with a low EF) already have a weak heart. This drop in cardiac output will be more significant, often leading to severe symptoms and an unstable patient!

      Blood Clots

      With the atria quivering – stasis of blood occurs. Remember, stasis of blood is one of the 3 factors that can lead to blood clots (Virchow’s triad). This increases the likelihood of thrombus formation.

      A thrombus in the right atria can embolize to the lungs and cause a pulmonary embolism, and a left atrial thrombus can embolize to the brain and cause an embolic stroke.

      Both of these are very serious conditions which can lead to disability and death, so prevention of this complication is important.

      Treatment of AFIB RVR

      Treatment of AFIB differs and depends on the patient’s symptoms and quality of life. This will involve at least one, but possibly all three of the following:

      • Rate control: Control the heart rate with AFIB (preventing RVR)
      • Rhythm Control: Convert and maintain the patient in a normal sinus rhythm
      • Anticoagulation: Giving blood thinners to prevent blood clot formation within the atria

      Which the Provider team and Cardiology will ultimately choose treatment options. We’ll dive a little deeper into each of these treatment options.

      Rate Control

      Rate-control is achieved via medications to slow down the ventricular response to the AFIB. Common medications include Metoprolol, Diltiazem, Digoxin, Esmolol, Amiodarone, and even magnesium sulfate.

      For AFIB RVR, we often give the following medications to control the rate:

      IV Diltiazem

      Also called Cardizem, this is more commonly given for AFIB RVR. The dose is 0.25mg/kg bolus, which is usually around 20mg. This should be pushed over 2 minutes. A repeat bolus of 0.35mg/kg can be given in 15 minutes if rate control is insufficient, and then a patient should be started on a titratable Cardizem drip.

      IV Metoprolol

      Also called Lopressor, this is especially helpful if the patient is on a Beta-blocker at home and maybe has missed some doses. The dose is 2.5-5mg IV q5m x 3. Administer the IV push over 2 minutes, and monitor rhythm and blood pressure closely. Use with caution with asthma/COPD exacerbations.

      Low BP & RVR

      One thing to point out is that those patients with significant left ventricular heart failure and AF RVR may paradoxically improve their blood pressure with rate control, so it still may be wise to administer a low dose of metoprolol or cardizem in these select patients if borderline hypotension is present. Always verify with the Physician/APP.

      Rhythm Control

      Rhythm-control is achieved via medications or electrical cardioversion. If the patient is unstable, they will be electrically cardioverted. Otherwise, the cardiologist may choose to start the patient on an antiarrhythmic such as amiodarone, Flecainide, multaq, etc.

      Many elderly patients who do not have significant symptoms will not undergo rhythm control. This is ultimately up to the cardiologist.

      Chemical Cardioversion

      IV amiodarone can be used, or the cardiologist may choose to start an oral antiarrhythmic such as Amiodarone, Sotalol, Dofetilide, etc

      Electrical Cardioversion

      Unstable patients should undergo synchronized cardioversion with the defibrillator

      Radiofrequency Ablation

      Patients with frequent symptoms (often younger patients) may undergo an ablation to burn off the area of the heart that is triggering AFIB


      Anticoagulation is almost always used in patients with AFIB, unless there is acute bleeding or a significant risk of bleeding.

      Anticoagulation is used to prevent thrombus formation which can cause PEs and Strokes as explained above. Within the hospital, anticoagulation will include either:

      Heparin Drip

      The Provider will order a titratable heparin drip per facility protocol. This usually will have an initial bolus ordered as well. The patient’s PTT will occasionally be checked and the drip will be adjusted accordingly. Heparin drips offer quickly-reversible anticoagulation in case the patient starts bleeding.

      SubQ Lovenox

      SubQ lovenox at a dose of 1mg/kg BID can be given alternatively.

      Before being discharged, the patient is then transitioned onto an oral anticoagulant such as coumadin, Eliquis, Xarelto, Pradaxa, or ASA/Plavix.


      Coumadin is much less commonly prescribed than it used to be because it requires frequent blood checks of INR, as well as dietary changes and medications, can significantly impact its therapeutic levels

      The CHADSVASC score is used to gauge risk for thrombus formation, which factors in age, sex, h/o CHF, HTN, Stroke/TIA/DVT/PE, Vascular disease, or Diabetes. If the patient does not have a high risk of bleeding such as intracranial bleeding, GIB, or frequent falls, then they are usually started on an anticoagulant.

      Clinical Pearls

      Patient Specific

      The workup and treatment will depend on the patient’s symptoms and overall clinical picture. With AFIB, there is no one-size-fits-all approach!

      AFIB RVR

      Focus on rate control and anticoagulation! Become familiar with IV Cardizem and titrating a Cardizem drip, as well as IV Lopressor!

      Unstable = Shock

      Patients who are unstable should be electrically cardioverted with a synchronized shock. Remember to press SYNC, and the dose is 50-100J. These patients will require sedation and pain control (i.e. IV fentanyl).

      Want to learn more?

      If you want to learn more about cardiac arrhythmias, I have a complete video course “ECG Rhythm Master”, made specifically for nurses which goes into so much more depth and detail.

      With this course you will be able to:

      • Identify all cardiac rhythms inside and out
      • Understand the pathophysiology of why and how arrhythmias occur
      • Learn how to manage arrhythmias like an expert nurse
      • Become proficient with emergency procedures like transcutaneous pacing, defibrillation, synchronized shock, and more!

      I also include some great free bonuses with the course, including:

      • ECG Rhythm Guide eBook (190 pages!)
      • Code Cart Med Guide (code cart medication guide)
      • Code STEMI (recognizing STEMI on an EKG)

      Check out more about the course here!


      Burns, E. (2021). Atrial Fibrillation. In ECG Library. Retrieved from

      Kumar, K. (2022). Overview of atrial fibrillation. In T. W. Post (Ed.), UpToDate. Retrieved from

      Olshansky, B. (2022). The electrocardiogram in atrial fibrillation. In T. W. Post (Ed.), UpToDate. Retrieved from

      Phang, R., Prutkin, J. M., Ganz, L. I. (2022). Overview of atrial flutter. In T. W. Post (Ed.), UpToDate. Retrieved from

      Prutkins, J. M. (2022). Electrocardiographic and electrophysiologic features of atrial flutter. In T. W. Post (Ed.), UpToDate. Retrieved from

      William Kelly, MSN, FNP-C

      Will is a Nurse Practitioner who is the founder and author of Health and Willness, an online educational platform to build clinical knowledge and skills of nurses and nurse practitioners!


      An Overview of the different IV gauges and which scenarios they can be used for! #ER #IV #Nursing

      RSI Intubation for Nurses: Rapid Sequence Intubation

      RSI Intubation for Nurses: Rapid Sequence Intubation

      William J. Kelly, MSN, FNP-C
      William J. Kelly, MSN, FNP-C

      Author | Nurse Practitioner

      RSI, or Rapid sequence intubation, is the process where we intubate people in the hospital, pre-hospital, and emergency department settings when the patient is awake.

      It involves multiple different steps that need to occur to quick succession, to provide first sedation, then paralysis, then insertion of the endotracheal tube into the trachea. 

      Learn all about RSI intubation, and specifically what the nurse’s role during an intubation is, and which compications and montioring parameters to watch out for!

      RSI intubation: rapid sequence intubation for nurses Featured Image

      Indications for RSI Intubation?

      So when does a person need intubed? Well, this really depends, but emergent intubations often involve severe respiratory distress

      Patients in acute respiratory failure will typically present with:


        Increased respiratory rate > 20 rpm


        SPO2 < 90%

        Increased WOB

        Increased work of breathing characterized by use of accessory muscles

        Adventitious Breath Sounds

        Presence of abnormal breath sounds including wheezing, crackles, rhonchi, or diminishment

        Other Abnormal Vital signs

        May be present including tachycardia, hypertension, hypotension, fever, or altered mental status

        Tripod position is when a patient is sitting over the bed leaning forward, supporting their upper body with their hands on the knees or another surface. This helps accessory muscles breath more easily, but can be an ominous sign to someone who is in respiratory distress. Think COPD!

        Indications for Rapid Sequence intubation (RSI intubation) includes:

        • Acute Respiratory Failure (from pneumonia, COPD, CHF, Covid, etc)
        • Anaphylactic reaction or Angioedema
        • When the patient cannot protect their airway (severe alcohol intoxication, drugs, etc.)
        • For surgery

        The Nurses Role during RSI

        So what is YOUR responsibility as the nurse?  Well don’t worry, you shouldn’t actually be the one to intubate the patient (although there are some exceptions such as NICU nurses and Flight nurses). 

        The person who placed the Endotracheal (ET) tube is usually a paramedic, physician, and sometimes an advanced practice provider (PA, NP, or CRNA). This is usually:

        • EM Physician but sometimes APP
        • IM Physician
        • Anesthesia

        The nurse’s role is not to physically intubate, but nurses are essential in making sure the intubation goes safely and smoothly. They are also on the front lines to notice and intervene when things go wrong!

        The nurse’s role is to prepare the patient and equipment,  administer the medications, help manage the airway (although this is usually the job of respiratory therapists), and monitor the patient.

        Afterwards, they are required to keep the patient sedated with titratable sedatives.

        It is still important for nurses to understand how the RSI intubation process goes, even if they are not the ones placing the ET tube. It takes a team of nurses, respiratory therapists, physicians, and more to have a successful intubation without any complications.

        Alternatives to RSI intubation

        Are there any alternatives to intubation? Yes and no. 

        There are certainly treatments we can try before jumping to intubation. These include nebulizers, certain IM/SQ meds, a non-rebreather, High-flow nasal cannula, and CPAP or BIPAP.

        However, usually when intubation is decided on, it is when the patient is in impending respiratory arrest, or when the other treatments already aren’t enough. 

        RSI intubation is kind of our last saving measure that we can do to save their life and stabilize their respiratory system. 

        RSI Medications

        Before diving into the steps of RSI, we need to review the important medications that are given during RSI.

        It is the nurses responsibility to draw these up, reconstitute them, and give them. Any medication that a nurse gives, they should know how the medication works, any side effects, and what to monitor for.


        First we’re going to talk about sedatives. A sedative is a medication that acts as a CNS depressant – essentially putting the patient to sleep. Different sedatives work in different ways. Sometimes, it takes multiple different sedatives at the same time to effectively sedate a patient.

        Sedatives are also called induction agents – inducing sedation in the patient. They also decrease the sympathetic response, making the body better tolerate the overall intubation experience.

        In regards to RSI Intubation, SEDATIVES ARE ALWAYS GIVEN FIRST

        This is because you need to knock the patient out before you paralyze them, as this is a very frightening experience if not. It can also cause tachycardia, hypertension, and increased ICP if you don’t!


        Etomidate is the most common sedative that will be ordered for RSI intubation. 

        Etomidate does not offer any analgesia, so sometimes fentanyl is added to minimize the SNS stimulation for patients with significant cardiovascular disease or increased ICP patients.

        Etomidate does not really affect blood pressure, but it can cause some mild increase in airway resistance.

        Side Effects & Monitoring


        Etomidate can cause myoclonus to occur, which is brief and harmless, but can be mistaken for a seizure.

        Adrenal Suppression

        Etomidate can cause adrenal suppression for 12-24 hours after the injection. This could potentially impact hemodynamic stability (blood pressure), mainly in patients who are at risk such as those with pre-existing adrenal insufficiency or severe sepsis.

        Patients with severe sepsis who are intubated with etomidate and become hypotensive despite fluids and a vasopressor should be given a 1x dose of hydrocortisone 100mg IV.

        Heart Failure Exacerbation

        Etomidate doesn’t cause HF, but patients with pre-existing HF may have exacerbated underlying myocardial dysfunction after administration.


        Versed, also called Midazolam, is the most commonly used Benzodiazepine used for sedation for RSI intubation.

        Versed also does not cause analgesia, but is a good choice for patients in status epilepticus because it offers anticonvulsant properties.

        However, it can decrease the blood pressure, so this should be avoided in patients who are hemodynamically unstable.

        Side Effects & Monitoring


        Versed can cause a decrease in Mean Arterial Pressure (MAP) by 10-25%. This means Versed should generally be avoided in hypotensive patients or those at risk for hypotension (severe sepsis, trauma, etc).


        Ketamine is a newer sedative used for RSI intubation. It’s structurally similar to PCP, and can cause some interesting side effects. However, it can be a great sedative and analgesic to help with rapid sequence intubation.

        The good thing about Ketamine is it preserves the respiratory drive. This makes it excellent choice for minor procedural sedation where intubation is not needed.

        However, the increased catecholamine stimulation can cause tachycardia, hypertension, and possibly increased ICP, making it a poor choice for head traumas and hypertensive crises, and also those with cardiac ischemia or aortic dissections.

        However, this can be helpful in patients who are hypotensive to increase BP or in severe asthmatics to cause bronchodilation (in theory). 

        Side Effects & Monitoring


        Ketamine increases the risk of laryngospasm, especially in those with history of upper respiratory disease or asthma. This is because ketamine does not suppress pharyngeal and laryngeal reflexes. In this case, it can be helpful to use fentanyl with it


        Ketofol is the combination of ketamine and fentanyl. This can cause analgesia, sedation, and amnesia, and can be a good choice for patients with severe bronchospasm.

        Increased Cardiac Activity

        Ketamine causes increased stimulation of the sympathetic nervous system, releasing catecholamines leading to tachycardia, hypertension, increased myocardial demand, and even possible cardiac arrhythmias.

        This can be beneficial in patients who are hypotensive, but dangerous for those with active cardiac disease or aortic dissection.

        Emergence Reactions

        Ketamine can cause an “emergence phenomenon” primarily when used for procedural sedation. This is when the patient may experience vivid and/or disturbing dreams as they wake up. Hallucinations and frank delirium may occur postoperatively up to 24 hours. 

        This usually does not happen with patients who are intubated and sedated for over 24 hours.


        Propofol is a common sedative, and a frequent agent of choice for maintaining sedation with a slow titratable drip. It has a characteristic appearance of milk.

        Propofol is the drug that Michael Jackson was found to have overdosed on. It causes deep sedation and does diminish the patients respiratory drive.

        Propofol has the following actions on the body:

        • Decreases airway resistance: Good for bronchospasm
        • Neuro-Inhibition: Good for intracranial pathology
        • Suppresses SNS: Good for hypertension, bad for hypotension & conditions which decrease cerebral perfusion

        Propofol IV Push?

        Make sure your specific state and facility allow RNs to give IV boluses of propofol, and if so, make sure the provider is always at the bedside. Since propofol causes deep sedation, it may not be within your scope as a nurse to push it. Seems silly, but always protect your license!

        Side Effects & Monitoring


        Propofol has a blood pressure lowering effect, which can decrease the MAP by 10%, but sometimes even ≥ 30%.

        Use caution if the patient has a borderline low pressure or baseline MAP of 60-70 mmHg.

        Patients at risk for hypotension include severe sepsis, trauma, severe aortic stenosis, etc.


        Propofol can cause bradyarrythmias to occur. This is more common with high doses, prolonged duration, and concurrent medications like beta-blockers, paralytics, and opioids. Patients with a history of cardiac disease are at increased risk.

        QT Prolongation

        QT prolongation can predispose your patient to dangerous ventricular arrhythmias like Torsades de Pointes and VFIB. This is more common with:

        • High propofol doses
        • Elderly patients
        • Structural heart disease
        • Congenital Long QT
        • QT prolonging medications
        • Electrolyte Disturbances


        Anaphylaxis is rare with Propofol but can occur, usually within 5-10 minutes after infusion. Those with a history of soybean or egg allergy are probably fine to take it.

        Soybean Allergy

        Allergy to soybeans or egg used to be a contraindication for receiving propofol, but newer formulations of the drug rarely produce a reaction and are likely safe

        Elevated Triglycerides & Lipase

        Propofol is a lipophilic fatty solution which contains triglycerides. Infusion can lead to elevations in triglycerides and lipase, which usually occurs 2-4 days after initiation. This can lead to pancreatitis, especially in those who are already at risk.


        PRIS stands for Propofol Infusion Syndrome. PRIS is rare but deadly. When occurs, the patient suffers from acute refractory bradycardia which may lead to asystole, and also may have:

        • severe metabolic acidosis,
        • cardiovascular collapse,
        • rhabdomyolysis
        • hyperlipidemia
        • renal failure
        • hepatomegaly

        This is more common with high doses (>4mg/kg/hr) and long duration of use (>48 hours).

        Choosing the Right Sedative

        There are some specific scenarios where one sedative may be more appropriate than others. Regardless, it is always the Providers preference and what they’re familiar with. 

        Head Injury or Stroke


        Status Epilepticus

        Propofol or Etomidate

        Severe Bronchospasm

        Propofol or Ketamine (+/- fentanyl)

        Cardiovascular Disease

        Etomidate +/- Fentanyl


        Etomidate 0.15mg/kg or ketamine 1mg/kg


        Paralytics, also called neuromuscular blocking agents (NMBAs), are given immediately after the sedative kicks in, which produces a paralyzing effect on the body. This relaxes the patients muscles and makes the intubation easier for the Physician or APP, and minimizes complications.


        Succinylcholine or Sux for short, is the classic paralyzing agent for RSI. It is termed a “depolarizing neuromuscular blocker” because they cause the muscle cells to “fire” or depolarize, but then don’t let the muscles repolarize, leading to paralysis.

        While used in most scenarios, this is contraindicated in conditions which may cause hyperkalemia or may lead to an exaggerated response. This is because even in normal patients, Sux can increase potassium levels by 0.5-1.0 mEq/L.

        These conditions include:

        • Malignant hyperthermia (personal or family history)
        • Neuromuscular disease with denervation (i.e. MS)
        • Muscular dystrophy
        • Stroke > 72h old (especially with significant motor denervation)
        • Rhabdho
        • Significant burn(s) over 72h old
        • Significant Hyperkalemia

        Myesthenia Gravis

        Patients with MG are resistant to Sux, so should be given 2mg/kg

        Side Effects & Monitoring


        Sux commonly causes fasciculations of the muscles prior to causing full paralysis.

        This may increase ICP and stimulate emesis leading to aspiration.


        A metabolite of Sux can stimulate muscarinic receptors to release acetylcholine, producing bradycardia of the sinus node. This can be treated with atropine.


        Rocuronium or “ROC” for short is a “non-depolarizing” NMBA used for sedation for RSI intubation. This is because it is an acetylcholine antagonist, blocking its effects and leading to paralysis.

        ROC is used when Sux is contraindicated as above.

        Some conditions which may decrease the efficacy of the paralysis include:

        • Respiratory alkalosis
        • Hypercalcemia
        • Demyelinating lesions (MS)
        • Peripheral neuropathies
        • Muscle trauma

        Side Effects & Monitoring


        ROC can increase peripheral vascular resistant and cause a temporary increase in BP. It can also cause transient hypotension in some people. 


        ROC can cause temporary tachycardia for about 5 minutes.

        Right-sided HF

        ROC may worsen pulmonary HTN, leading to right-sided heart failure in those who are predisposed.

        Other Paralytics

        Other non-depolarizing paralytics include Vecuronium and Pancuronium, but these are not used as often.

        Vecuronium, shortened to “VEC”, is not used as frequently, as it has a longer onset of action – around 3 minutes. This can be reduced with a smaller “priming” dose.

        The RSI Intubation Procedure

        Prepare the Patient

        To prepare the patient for RSI intubation, make sure they are positioned in the “sniffing” position, supine with their neck flexed. Placing a towel between their head and neck can help.

        Make sure the patient is getting hyper-oxygenated at the same time, usually with a Non-rebreather or a Bag-valve mask at 100%.

        Respiratory therapists are often in charge of airway along with the Provider.

        Place the patient on the monitor including telemetry, continuous pulse ox, and end-tidal CO2 if possible.

        Explain the procedure to the patient and ensure informed consent is obtained, either written or verbal. Written is often not able to be obtained due to the emergent nature of many intubations.

        If the patient is altered, ensure there is no DNR or DNI order form or POLST. 

        Using a BVM

        If using a BVM hooked up to 100% oxygen, make sure you are squeezing the BVM with each spontaneous breath to ensure the valve opens and the oxygen is given to the patient!

        Prepare the Equipment

        Bring the code cart at the bedside. You don’t necessarily need to hook up the defibrillation pads, but always follow facility protocol.

        Most of the equipment needed will be found in the Airway drawer, usually one fo the last drawers.

        The equipment needed for the actual intubation will be:

        • Laryngoscope
        • ET tube
        • Stylet
        • 10cc syringe
        • Suction Tubing & Yankauer
        • ETCO2 or CO2 detector
        • Stethoscope
        • Bag-valve mask

        Ask the Provider which size ET tube they’ll want, which is often 7.0 for females, and 8.0 for males.

        The stylet will need to be placed inside the ET tube, which is usually cuffed. This will be removed once the Provider gets the tube in the right spot.

        Administer Medications

        The Provider will give you a verbal order for which sedative(s) and paralytic they want.

        Verbally clarify the name and dose, and begin to draw up the medications. You may need to grab these medications from an “RSI kit” in the Accudose, or they may be located in your code cart.

        Usually one of the nurses will assume the “medicine” responsibility while the others are preparing the patient and equipment.

        Some medications will require reconstitution. This means you may need to mix saline with powdered medication to make a solution. Verify the final doses/amounts with another nurse.

        Make sure to accurately label each, so you don’t mix up the sedative and the paralytic!

        Once everyone is ready for the intubation, wait for the Provider’s verbal “ok” to give the medications, and administer the medications as above. Most are given quickly over 5-10 seconds. 

        First the sedative, then once the patient has decreased LOC and you get the next verbal OK from the Provider, administer the paralytic.

        RT should be bagging the patient at this time until the Provider is ready for the intubation. This is usually within 30-60 seconds after administering the paralytic.

        The Intubation

        Your main job is now done, and now you just watch the intubation procedure and monitor the patient, following any verbal orders that are given.

        The Provider will place the ET tube between the vocal cords, typically 21cm deep in women and 23cm in men. This is measured at the teeth.

        Verify Placement

        Immediately after intubation, the tube needs to be verified. This is verified in multiple ways.

        First, a CO2 detector may be attached to the ET tube. Observing color change from purple to yellow indicates CO2.

        If the patient is hooked up to an ETCO2, with each BVM breath, you should see normal CO2 levels near 35-45 mmHg.

        Additionally, someone should listen to all breath sounds listening for equal breath sounds.

        Lastly, the patient should have a portable CXR ordered to verify the placement. The radiologist may recommend pulling out or pushing deeper x amount of cm.

        Maintain Vent + Sedation

        Now the patient is successfully intubated. Your main job now is keeping the patient sedated so that the Ventilator can do its job and breath for the patient.

        This usually involves a continuous titratable drip, often propofol. The patient may also require additional sedatives, analgesics, and sometimes further paralytics.

        Of course, make sure to chart everything and continue to monitor the patient’s vital signs.

        If in the ER or Med-Surg, your goal should be to get that patient admitted/transferred ASAP.

        RSI Intubation Complications

        Unfortunately, not all RSI intubations go smoothly. These are usually emergent procedures and are not done in a controlled environment. 

        As the nurse, you are the first one who is going to notice any complications while monitoring your patient.  It’s important to know what to look out for and how these complications are managed.

        Esophageal Intubation

        This is when the ET tube is in the esophagus instead of the trachea. This becomes obvious when verifying placement.

        When it occurs, the ET tube will be completely removed and the Provider will re-insert the tube with another attempt.

        Gastric Tube

        An OG or NG to suction should be placed in all patients after intubation to decompress the stomach to prevent emesis and to decrease intrathoracic pressure.

        A foley should also be placed.

        Right Mainstem Intubation

        If the ET tube is placed slightly too deep, it will often go into the Right Mainstem Bronchus of the right lung. This is because it is more vertical than the left.

        If left, the patient may have signs of hypoxemia and worsening respiratory status, and if not fixed can cause barotrauma, pneumothorax, and hemothorax.

        Breath sounds should be equal throughout the lobes, but a CXR will need to be done to verify this isn’t the case. 

        Treatment involves pulling out the ET tube per radiologists recommendations, which the Provider should do.


        A traumatic insertion can cause perforation of the esophagus or trachea. This is very rare, but severe.

        Signs include presence of subcutaneous emphysema in the mediastinum, and worsening respiratory status.

        A CXR may show pneumomediastinum, subcutaneous emphysema, and possible pneumothorax.

        RSI Intubation is common in the ER and ICU, but can still be nerve-wracking and should cause an adrenaline rush! Equipping yourself with knowledge and familiarity is the best thing you can do to become comfortable during this procedure!


        Bookatz A., & Sakles, J. C. (2021). Rapid sequence intubation. In B. Simpson (Ed.),

        Brown, C. A., & Sakles, J. C. (2022). Rapid sequence intubation for adults outside the operating room. In T. W. Post (Ed.), Uptodate

        Caro, D. (2022). Induction agents for rapid sequence intubation in adults outside the operating room. In T. W. Post (Ed.), Uptodate

        Caro, D. (2022). Neuromuscular blocking agents (NMBAs) for rapid sequence intubation in adults outside of the operating room. In T. W. Post (Ed.), Uptodate

        Morgan, M. A. (n.d.). Esophageal intubation. In Radiopaedia

        Want to Learn more?

        If you want to learn about cardiac arrhythmias, I have a complete video course “ECG Rhythm Master”, made specifically for nurses which goes into so much more depth and detail.

        With this course you will be able to:

        • Identify all cardiac rhythms inside and out
        • Understand the pathophysiology of why and how arrhythmias occur
        • Learn how to manage arrhythmias like an expert nurse
        • Become proficient with emergency procedures like transcutaneous pacing, defibrillation, synchronized shock, and more!

        I also include some great free bonuses with the course, including:

        • ECG Rhythm Guide eBook (190 pages!)
        • Code Cart Med Guide (code cart medication guide)
        • Code STEMI (recognizing STEMI on an EKG)

        Check out more about the course here!

        Get my ECG Interpretation Cheat Sheet!

        Everything you need to know on how to read a rhythm strip!

          We respect your privacy. You can unsubscribe at any time.

          Pulmonary Embolism: Nurse’s Reference Guide

          Pulmonary Embolism: Nurse’s Reference Guide

          William J. Kelly, MSN, FNP-C
          William J. Kelly, MSN, FNP-C

          Author | Nurse Practitioner

          A pulmonary embolism, frequently abbreviated as a PE, is a blood clot that lodges into the pulmonary vasculature of the lungs. Sometimes this can be asymptomatic, often there are mild-moderate symptoms, and other times patients can go into cardiac or respiratory arrest.

          No matter the symptoms, pulmonary embolisms can be deadly, and it is important for nurses to understand this disease and how to treat and monitor your patients with pulmonary embolisms.

          This article is part of a new series where we outline various medical conditions and the nursing assessment and management involved with each condition.

          What is a Pulmonary Embolism?

          A pulmonary embolism is a blood clot that lodges within the lungs. These are more commonly abbreviated to PEs. These can be very large or very small; only one, or many at the same time.

          The larger and more PEs that there are, the more dangerous this can be on the body. This can put significant strain on the heart, and can even cause cardiac arrest.

          Remember that a Thombus is one of the Hs and Ts to think about when a patient is coding!

          Pulmonary embolism‘s are highly associated with Deep Vein Thrombosis (DVT). You might hear the term VTE, which is an umbrella term for any blood clot within the body including DVTs and PEs.

          Pulmonary Embolism

          Causes of a PE

          There are many different causes that can cause a PE to develop, but it all goes back to Virchow’s Triad.

          Virchow’s Triad

          Virchow states that in order for blood clots to form within the body, there needs to be at least one of three things:

          Stasis of Blood

          Anything that causes blood to “sit still”

          Endothelial Injury

          Damage to the vascular system (arteries & veins)

          Hypercoagulable State

          Something that increases likelihood for clotting

          The more they have – the higher their risk of a blood clot from forming. However, a small percentage of patients won’t have any of these risk factors and still get a blood clot.

          Breaking down Virchow’s Triad, common risk factors for blood clot formation includes:

          Stasis of Blood

          • Immobility
          • Hospitalization
          • Varicose Veins
          • Atrial Fibrillation
          • Heart Failure
          • Elderly Age (>65)

          Endothelial Injury

          • Recent Surgery (especially orthopedic surgeries)
          • Trauma
          • Chemotherapies
          • Implanted devices
          • Central Lines
          • Inflammation
          • Sepsis

          Hypercoagulable State

          • Malignancy
          • Estrogen use (i.e. birth control)
          • Pregnancy
          • Inherited genetic predisposition (i.e. Factor V Leidin mutation)
          • Severe liver disease
          • Smoking
          • Obesity
          Pulmonary Embolism

          Nursing Assessment

          Patients with pulmonary embolisms usually present to the hospital or emergency department with shortness of breath.

          This is because an area of their lungs are not able to exchange gas normally. They are able to breathe in adequate oxygen, however they are unable to exchange that oxygen with carbon dioxide wherever the PE is, leading to a ventilation perfusion mismatch.

          Symptoms of a PE

          Common symptoms of a PE include:


          Also referred to as shortness of breath, and may be with exertion or at rest

          Chest Pain

          Usually pleuritic, aka worse with deep breaths or coughing


          Usually not productive, but may have pinky frothy or bloody sputum


          Syncope with chest pain and SOB is suspicious for PE

          Signs of DVT

          • Extremity Erythema
          • Extremity Edema
          • Extremity Pain
          Many patients may be asymptomatic or have mild nonspecific symptoms as well, or they could go right into cardiac arrest, especially with very large PEs.

          Quick Note

          Hemoptysis is not nearly as common of a symptom in a PE as your nursing textbook may have led you to think!

          The Physical Exam


          • Respiratory Distress
            • Tachypnea
            • Increased work of breathing
            • Use of accessory muscles
          • Cough
          • Pallor
          • Diaphoresis

          Vital Signs

          • Temp: May have low grade temps
          • BP: Normal, increased, or decreased (severe)
          • Pulse/HR: Tachycardic
          • Respirations: Increased
          • SPO2: May be normal or low


          • Lungs
            • Usually Normal
            • May be diminished
            • May have crackles if pulmonary infarct or acute CHF
            • Pleural friction rub
          • Heart
            • Tachycardia

          Quick Tip

          If a patient has CP/SOB and just recently had surgery or is pregnant, always think PE!

          The first thing you’ll usually notice is an increased rate of respirations, also called tachypnea. Patients with PEs are often in some visible respiratory distress.

          Patients with PEs often have pleuritic chest pain as well, so they’re unable to take full breaths without significant pain. This can increase the respiratory rate as they compensate by taking more frequent, shallow breaths.

          Patient’s pulse ox will often be normal unless there is significant respiratory distress. Patients may have a low-grade fever as well.

          Patience with PEs will often have tachycardia – which is a heart rate greater than 100 bpm.

          Blood pressure is often normal, but may be high secondary to pain. However very large PEs can put significant strain on the heart, causing significant hemodynamic compromise including hypotension and shock.

          When auscultating the lungs, a lot of times you aren’t really going to hear any specific bad breath sounds. You may hear some diminishment in the lung with the PE. Sometimes you may hear crackles and rarely wheezing.

          Nursing Interventions

          Cardiac Monitoring

          Place all patients with chest pain or SOB on a cardiac monitor to detect any arrhythmia that may occur and monitor heart rate.

          Patients with PEs will often have sinus tachycardia that does not completely improve with fluid administration.

          Patients with PEs can have all sorts of arrhythmias including:

          • Atrial fibrillation
          • bradycardia
          • RBBB
          • PVCs
          • VTACH/VFIB

          STAT EKG

          All patients presenting with chest pain and/or SOB should have an EKG obtained within 10 minutes of arrival.

          This is primarily to rule out any STEMI or ischemia. However, large PEs can cause significant righ theart strain.

          While they occur in < 10% of patients, signs of right heart strain on an EKG include:

          • Right heart strain pattern
          • S1Q3T3
          S1Q3T3 teaser

          Oxygen Support

          If the patient is significantly hypoxic or tachypneic, apply 2-4 L/min NC. If this is not enough to titrate SPO2 > 90%, apply a non-rebreather.

          In these cases, BIPAP or Intubation may be needed.

          IV Access

          Start a peripheral IV at least 18-20g in an AC line, as there is a high likelihood that these patients will be needing a CTA. These large bore IVs are needed to inject high-pressure dye.

          While drawing blood, make sure to draw a blue top as D-dimer may be ordered, as well as a PT/INR.

          Diagnosis of a PE

          To diagnose a PE, you will usually need advanced lung imaging, but lab work is part of the workup as well.

          Well's Criteria

          The Wells’ Criteria for PE is a clinical tool that is able to be used to determine the risk of a PE.

          This assigns points to each of the following:

          • Signs of DVT: 3 points
          • PE #1 likely dx: 3 points
          • HR > 100 bpm: 1.5 points
          • Immobiilization x 3 days: 1.5 points
          • Surgery within 4 weeks: 1.5 points
          • Previous PE/DVT dx: 1.5 pnts
          • Hemoptysis: 1 point
          • Malignancy w/ tx in last 6mo or palliative: 1 point

          Once you calculate their score, you can stratify their risk into one of the following:

          • Low risk: 0-1 point
          • Moderate: 2-6 points
          • High risk: >6 points

          Scores of 4 or less with a negative D-dimer can effectively rule out a PE.


          Blue Top blood work - DdimerOne way to minimize radiation is to obtain a D-Dimer in a patient with low to moderate suspicion of a PE.

          A D-dimer is a byproduct of fibrin which is increased in the blood whenever there is a blood clot.

          While this is a great test to see if there is a possibility of blood clots within the body, it is not very specific. This means that a negative D dimer (less than the threshold) is a pretty good way to tell if someone doesn’t have a blood clot. However, a positive D-dimer doesn’t necessarily mean there IS a blood clot in the body.

          Any bruise or minor injury can cause elevations in D-dimer, as well as pregnancy, heart disease, infections, and more.

          This means that if a D-dimer is above the threshold (around 230 but depends on your lab), then the Provider is pretty much forced to get a CTA to see if their truly is a PE.

          If a D-dimer is less than the threshold, then a PE can usually be ruled out. However, this is only the case is clinical suspicion is low to moderate.

          In patients who have a high liklihood of a PE, a D-dimer can miss a PE up to 15% of the time!

          Other Lab Work

          A troponin should be ordered in patients with chest pain and/or SOB. This can sometimes be mildly elevated in PEs, or significantly elevated if a PE causes a STEMI or NSTEMI.

          A BNP may be ordered if there are s/s of heart failure.

          Renal function should be checked before a CTA can be done, to make sure their kidneys can handle the dye. A GFR > 30 is usually adequate to obtain a CTA.

          Coagulation studies may be performed inpatient to see if there are any genetic mutations predisposing the patient to forming thrombi.


          An ABG may be obtained if the patient is in significant respiratory distress or has altered mental status.

          With a PE causing significant distress, you’ll typically see the following results on an ABG:

          • PaO2: Low (<80 mmHG)
          • PCO2: Low (<35 mmHG)
          • pH: Alkalotic (> 7.45)
          • HCO3: May be low (<22 mEq)


          A chest x-ray (CXR) will almost always be ordered on patients who are suspected of having a PE, because these can rule out some other causes of chest pain and SOB such as a pneumothorax or pneumonia.

          However, a CXR is not going to pick up a pulmonary embolism. A CXR may show nonspecific signs including atelectasis or effusions, but often will be completely normal.

          In order to actually see the pulmonary embolism, a CT pulmonary angiography (CTPA or just CTA) is required.


          Angiography is when a radiopaque dye is injected into the patient’s vein in order to get a good look at the patient’s vasculature during a CT scan. This can be timed to look at specific areas of the heart.

          CT Pulmonary Angiography is when this is done to look at the pulmonary arteries and veins. This means the radiologist can directly visualize pulmonary embolisms.

          If the patient’s GFR is <30, we generally avoid contrast dye. However, this may be completely facility dependent.

          If a patient cannot be given the dye (GFR < 30 or anaphylactic reaction), the alternative test is to obtain a V/Q Scan.

          Pulmonary Embolism

          V/Q Scan

          A VQ scan is a nuclear medicine test where they use radioisotopes in conjunction with X-rays to see if there are any ventilation/perfusion mismatches. Well this is not as definitive as a CTA, it does give probabilities of their being a PE, such as a “very low probability”.

          Quick Note

          The patients CXR really should be a clear study, otherwise the VQ scan will be poor quality. So if the patient has significant consolidation or pleural effusions, the VQ scan is unlikely to be very sensitive to finding a PE.

          Treatment of PE

          Treatment of a patient with a PE who is hemodynamically stable will generally consist of admission to the hospital, parenteral anticoagulation, and then transition onto an oral anticoagulant.

          Patients who have significant hemodynamic compromise may require reperfusion therapy.

          Parenteral Anticoagulation

          Treatment for pulmonary embolisms primarily involve anticoagulation.

          In the hospital setting this is usually IV unfractionated heparin. This Heparin is given as a Heparin drip, which is titratable depending on PTT levels. Each facility should have their own heparin drip protocol.

          In general, a bolus dose is given IV (can push fast), and then a slow drip is started. The PTT levels are usually checked every 6 hours but will depend on the protocol.

          SQ Lovenox is an alternative to IV heparin, and is given in a dose of 1mg/kg BID.

          But how does anticoagulants really help if the blood clot is already there? The role of the anticoagulants are to prevent further clots from forming, as well as to stabilize the clot from moving. This can be especially helpful if there is a DVT or an atrial thrombus within the heart. These can embolize and cause further PEs or even strokes.

          Quick Note

          I’ve found that usually IV heparin is ordered because this is more easily titrated and can be stopped quicker in case there is any bleeding or procedure that need done while inpatient.

          Oral Anticoagulation

          Sometimes the patient can be started directly on an oral anticoagulant and discharged home if they are otherwise stable, but this will depend on the Provider and the facility standards.

          Eliquis for PEOnce the patient is stable enough for discharge, they are started on long-term oral anticoagulation, such as Eliquis or coumadin.

          Patients with very recent surgery, hemorrhagic stroke, or active bleeding are not started on anticoagulation.

          Patients will often need to stay on the anticoagulation for at least 3 months, but sometimes longer. The blood clot should be reabsorbed by the body in about 6 weeks, but will depend on the size of the thrombus.

          Some patients will require life-time anticoagulation if they are found to have any genetic predispositions to blood clots. This is also true for patients with atrial fibrillation.

          IVC Filter

          IVC Filter for PEAn inferior vena cava filter, commonly referred to as an IVC filter, is a device that is sometimes placed to “catch” clots before they enter the right atria.

          This is usually placed in for patients who cannot be on anticoagulation, or those who have gotten repeat PEs despite anticoagulation therapy.

          They can be temporary and need removed eventually, but some that are placed are permanent.


          In patients who are hemodynamically unstable from their PE, thrombolytic therapy can be given to dissolve the clot. This is like TPA in a stroke, but given for a PE.

          However, there are many contraindications to thrombolytic therapy, and there is a risk of bleeding.

          Procedural Removal

          An Embolectomy can be performed if needed and if the facility is capable of doing so, particularly when thrombolytic therapy is unsuccessful or cannot be used due to contraindications.

          There are additional procedures that can be done to retrieve / break up the clot including:

          • Ultrasound-assisted thrombolysis
          • Rheolytic embolectomy
          • Rotational embolectomy
          • Suction embolectomy
          • Thrombus fragmentation
          • Surgical embolectomy

          Many facilities will not have these capabilities, but most should have thrombolytics.

          Saddle PE

          A Saddle pulmonary embolus is a very large PE located at the bifurcation of the main pulmonary artery. These PEs are rare but likely to cause significant hemodynamic compromise and cardiopulmonary respiratory arrest!

          Patient monitoring

          Monitoring the patient will mainly consist of monitoring their vital signs and supporting them however you can.

          Oxygen Support

          Monitor their oxygen status by respirations and pulse oximetry. Stable patients may only need q4h vitals.

          oxygen delivery devices and flow rates - simple maskIf their oxygen is low or if there is significant respiratory distress, titrate up their oxygen levels.

          A BIPAP or Intubation may be needed in severe cases.

          Blood Pressure Support

          Monitor their blood pressure per department protocol.

          If hypertensive, treat with analgesics and antihypertensives.

          If hypotensive, treat with fluid boluses, paying careful attention to respiratory and cardiac status. 

          Vasopressors may be required in severe cases.

          Cardiac Monitoring

          These patients should have telemetry ordered. 

          Monitor their cardiac rhythm per department protocol, and notify any changes to the Provider.

          Bleeding / Falls

          These patients are usually placed on anticoagulation as above. Be sure to place the patient on fall precautions, and monitor for any bleeding.

          Titrate the heparin drip according to protocol, and a high PTT may require that you stop the heparin drip for some time.

          Clinical Deterioration

          If the patient begins to deteriorate, be sure to notify the physician or APP and/or call an RRT.

          Remember that PEs put strain on the heart, so patients can go into flash pulmonary edema. Those with pre-existing CAD may have heart attacks.

          Overall Pulmonary Embolisms are a serious medical condition that can be deadly, so it is important to know how to treat these patients at the bedside.

          Do you have any crazy PE stories? Let us know in the comments below!


          Haag, A., et al (2022). Pulmonary embolism. In R. I. Donaldson (Ed.), WikEM, The Global Emergency Medicine Wiki

          Sharma, R. (2022). Pulmonary embolism | Radiology reference article. Retrieved February 8, 2022, from

          Tapson, V. F., & Weinberg, A. S. (2022). Treatment, prognosis, and follow-up of acute pulmonary embolism in adults. In T. W. Post (Ed.), Uptodate

          Thompson, B. T., Kabrhel, C., & Pena, C. (2022). Clinical presentation, evaluation, and diagnosis of the nonpregnant adult with suspected acute pulmonary embolism. In T. W. Post (Ed.), Uptodate

          Thompson, B. T., & Kabrhel, C. (2022). Overview of acute pulmonary embolism in adults. In T. W. Post (Ed.), Uptodate

          Want to learn more?

          If you want to learn more about cardiac arrhythmias, I have a complete video course “ECG Rhythm Master”, made specifically for nurses which goes into so much more depth and detail.

          With this course you will be able to:

          • Identify all cardiac rhythms inside and out
          • Understand the pathophysiology of why and how arrhythmias occur
          • Learn how to manage arrhythmias like an expert nurse
          • Become proficient with emergency procedures like transcutaneous pacing, defibrillation, synchronized shock, and more!

          I also include some great free bonuses with the course, including:

          • ECG Rhythm Guide eBook (190 pages!)
          • Code Cart Med Guide (code cart medication guide)
          • Code STEMI (recognizing STEMI on an EKG)

          Check out more about the course here!

          Pulmonary Embolism: A nurses reference Guide

          William Kelly, MSN, FNP-C

          Will is a Nurse Practitioner who is the founder and author of Health and Willness, an online educational platform to build clinical knowledge and skills of nurses and nurse practitioners!


          Blood Transfusion Reactions: A Comprehensive Nursing Guide

          Blood Transfusion Reactions: A Comprehensive Nursing Guide


          William J. Kelly, MSN, FNP-C
          William J. Kelly, MSN, FNP-C

          Author | Nurse Practitioner

          Blood transfusion reactions are common within the hospital setting because so many blood products are given. Transfusing blood products that are lacking or actively being lost (i.e. GI bleed) is literally life-saving treatment.

          In this article, we will talk about the different blood products, why they are given, and then dive into each type of blood transfusion reaction, what causes them, their signs and symptoms, and how to manage them as the nurse.

          Acute Hemolytic Transfusion Reaction

          What are blood products?

          There are multiple different blood products that are transfused within the hospital, and each one can have adverse reactions called blood transfusion reactions.

          Packed Red Blood Cells (PRBCs)

          Packed Red Blood Cells or PRBCs are given to patients when their hemoglobin levels are low. This is called anemia. Some common causes of anemia that may need a transfusion include:

          • Acute and chronic blood loss (i.e. GI Bleed)
          • Untreated ongoing Anemia (Iron-deficiency anemia)
          • Destruction of blood cells
          • Decreased production of red blood cells (i.e. Chemotherapy, aplastic anemia)

          PRBCs are usually ordered when hemoglobin levels drop below 7g/dL, but it depends on the nature of the patient’s anemia as well as their medical history and their hemodynamic stability (are their vital signs normal?)

          1 to 2 units will be ordered of PRBCs depending on how low the patient’s hemoglobin level is, as well as if there is active blood loss. Each unit of PRBCs should increase the hemoglobin by about 1g/dL.

          Before blood products are given, a type and screen is done to verify the patient’s blood type and screen for any antibodies that may require special blood. The exception is if the patient has significant ongoing hemorrhage and the patient needs emergent blood. In this case, O Negative blood is given as they are the universal donor.

          Each unit of blood will take about 2 hours to transfuse, but the maximum amount of time is 4 hours when the blood will expire. In emergencies, blood can be run as fast as needed, often with pressure bags.

          Fresh Frozen Plasma (FFP)

          Fresh Frozen Plasma or just Plasma is the portion of whole blood that doesn’t include the red blood cells, which contains clotting factors.

          Some reasons FFP may be ordered for your patient include:

          • Massive blood transfusions
          • Severe liver disease or DIC
          • Coumadin with bleeding or surgery (in addition to Vitamin KL when Kcentra not available)
          • Factor deficiency with bleeding or surgery

          In massive transfusions, you replace 1 unit of FFP for every unit of PRBCs replaced (along with 1 unit of platelets).


          Platelets are a blood product that help the body form blood clots and prevent bleeding.

          These can often become low from various autoimmune disorders, cancers and chemotherapies, medication reactions, and liver disease.

          Platelets are replaced when platelet levels are low, termed thrombocytopenia. Platelets are usually ordered for:

          • Active bleeding with platelet count <50,000/microL
          • Thrombocytopenia in need of invasive procedure or surgery
          • To prevent spontaneous bleeding, usually when platelet levels <10,000/microL

          Most platelets that are given are obtained by “apheresis”. One apheresis unit is equal to 4-6 “pooled random donor units”. 1 unit of platelets by apheresis should increase the platelets by about 30K.

          Why are Blood products Given?

          Blood products are given whenever the blood levels are too low, or when there is acute bleeding. While this will depend on each specific patient and clinician, blood products are generally given when:

          • PRBCs are given when hemoglobin is below 7 or there is ongoing blood loss with hemodynamic compromise
          • Platelets are given when active bleeding with levels <50K, or when <10K.
          • FFP is given with massive blood transfusions, severe liver disease or DIC, or as a coumadin reversal option.

          Blood Transfusion Reactions

          As with any medication or fluid, there are possible adverse reactions that can occur and that you need to monitor for.

          Because we are infusing blood products from a donor, this adds an increased risk of adverse reactions to occur.

          Because of this, nurses must monitor their patients very closely during blood product transfusions. The nurse must stay with the patient the first 15 minutes of a blood transfusion (may change depending on specific facility protocol), and frequently check vital signs.

          There are common blood reactions, and then there are more rare and severe reactions that can occur.

          Acute Hemolytic Transfusion Reaction

          An acute hemolytic transfusion reaction is a rare life-threatening blood transfusion reaction to receiving blood, specifically PRBCs.

          This happens when incompatible blood is accidentally infused with the patient. This is why the patient’s blood type is checked in the first place so that an appropriate donor can be given.

          Compatible blood is outlined below:

          Acute Hemolytic Transfusion Reaction

          When having a true acute hemolytic reaction, the patient will quickly experience:

          • Fever and/or chills
          • Severe flank pain or back pain
          • Signs of DIC (like oozing form IV site)
          • Hypotension
          • Urine turning red or brown (hemoglobinuria)

          This is a severe reaction as the patient’s own immune system and the donor’s immune system attack each other, destroying blood products and causing damage in the process. The patient may experience hemodynamic instability including life-threatening hypotension.

          If this reaction occurs, the nurse should:

          Acute Hemolytic Reaction: Nursing Steps

          If an acute hemolytic reaction is suspected, the nurse should:

          1. Stop the blood immediately and check vitals
          2. Hang NS through a patent IV line. Pt should be ordered least 100-200ml/hr to prevent oliguria/renal failure, or boluses if hypotensive
          3. Notify the MD/APP and blood bank, or call an RRT if unstable
          4. Recheck identifying tags and numbers on blood
          5. Administer diuresis as ordered in those at risk for volume overload
          6. Additional testing may include DIC testing and additional blood compatibility and screenings.
          7. Transfer the patient if required

          The Provider should guide treatment, but these are serious reactions and would likely need monitoring in the ICU.

          Your facility should have a specific protocol in the event of significant blood transfusion reactions, which often involves re-testing the patient as well as re-testing the blood unit itself.

          Acute Hemolytic Blood Transfusion Reaction

          Anaphylactic Transfusion Reaction

          An anaphylactic transfusion reaction is a severe allergic reaction to something within the blood product. These are rare, with an estimated 1 in 20-50K transfusions.

          This reaction occurs seconds to minutes after starting the transfusion.

          The recipient is severely allergic to something within the donor blood, which they may have antibodies against, specifically those who are IgA deficient or haptoglobin deficient.

          Signs of an anaphylatic reaction include:

          • Urticaria
          • Wheezing and/or Respiratory Distress
          • Angioedema (facial swelling)
          • Hypotension with/without Shock

          Treatment involves immediately stopping the transfusion, and then treatment with standard anaphylactic medications. These medications include:

          • Solumedrol 125mg IV STAT
          • Benadryl 50mg IV STAT
          • PEPCID 20mg IV STAT
          • IV Fluids

          More significant interventions may be needed, including:

          • Epinephrine .3mg IM STAT +/- IV epinephrine drip with severe bronchospasm or airway edema
          • Vasopressors for hypotension
          • Oxygen and Intubation

          The blood cannot be restarted, and additional testing will need to be performed, and blood from another donor will have to be given.

          Anaphylactic Blood Transfusion Reaction

          Urticarial Transfusion Reaction

          An urticarial transfusion reaction is a less severe allergic reaction to a component within the blood products, but much more common, occurring in 1-3% of blood transfusions. This is an antigen-antibody interaction, usually with donor serum proteins.

          Patients with this blood transfusion reaction will develop urticaria (hives) with no other allergic signs/symptoms such as wheezing, angioedema, or hypotension.

          When an urticarial transfusion reaction occurs:

          1. Immediately stop the transfusion
          2. Check Vital signs and ask the patient for other symptoms (like trouble breathing or facial/throat swelling, dizziness, chest pain, etc)
          3. Notify the Provider
          4. Give IV antihistmine as ordered
          5. Restart blood if hives resolve and no other signs of allergic reaction develop

          When an urticarial transfusion reaction is diagnosed, stop the blood for 15-30 minutes, give IV antihistamine like Benadryl, and then restart the infusion once hives resolve but slowly and cautiously. Check your specific facility’s protocol.

          Urticarial Blood Transfusion Reaction

          Febrile Non-Hemolytic Transfusion Reaction (FNHTR)

          A febrile non-hemolytic transfusion reaction is exactly what it sounds like – the patient develops a fever after/during a transfusion, but they are not experiencing other signs of a hemolytic reaction.

          This is usually due to a systemic response to cytokines which developed during the process of storing the blood.

          These are very common, occurring in .1-1% of all transfusions.

          This fever will occur 1-6 hours after the transfusion begins.

          Signs/symptoms include:

          • Fever (38-39*+ C)
          • Chills
          • Severe Rigors
          • Mild dyspnea

          If the temperature is more than 39°C or 102.2°F, consider a hemolytic transfusion reaction.

          Whenever there is a fever present, the main thing to consider is if this could be the first sign of a more serious transfusion reaction such as a hemolytic reaction, TRALI (see below), or Sepsis.

          If there is just a fever and no other significant reaction is suspected, antipyretics should be be given, usually Acetaminophen 650-975mg PO. The transfusion can usually be continued but monitored closely.

          Future transfusions should be “leukocyte reduced”, which is a process that removes most of the white blood cells within the blood.

          Febrile Non-Hemolytic Blood Transfusion reaction

          Transfusion-Associated Acute Lung Injury (TRALI)

          Transfusion-Associated Acute Lung Injury, known as TRALI, is a rare but one of the severe blood transfusion reactions that can occur after transfusion of a blood product.

          This is when the transfused product activates the recipient’s neutrophils, causing acute lung damage.

          Patients at risk for TRALI include patients with:

          • Liver transplants
          • Chronic ETOH abuse
          • Smokers
          • Volume overload
          • Shock

          The patient will experience sudden and severe respiratory failure during or shortly after a transfusion, but up to 6 hours after the transfusion. This is often associated with:

          • Hypoxia
          • Fever
          • Hypotension
          • Cyanosis

          New bilateral infiltrates on CXR are often seen.

          TRALI: Nursing Actions

          When TRALI is suspected, the nurse should:

          1. Stop the transfusion immediately
          2. Check vitals and ask patient their symptoms
          3. Call an Rapid Response if the patient is in respiratory distress and/or hypoxic/hypotensive (or notify Provider in ED/ICU).
          4. Support oxygen status (oxygen, intubation if needed)
          5. Support blood pressure (fluid boluses, vasopressors if needed)
          6. Notify the Blood Bank
          7. Obtain a Stat portable CXR
          8. Follow any additional orders / administer any additional medications

          Sometimes steroids are given, although evidence is not great.

          These patients may need to be intubated and will likely need to be transferred to the ICU and closely monitored.

          They do not seem to be at increased risk for TRALI to occur again with a different transfusion in the future, however, donors who are implicated are banned from donating ever again.


          Transfusion-Associated Sepsis

          Transfusion-Associated Sepsis is a life-threatening blood transfusion reaction that can occur with the administration of contaminated blood products which are infected with bacteria.

          The patient will start developing signs or symptoms within 5 hours after the infusion, but usually around 30 minutes.

          Signs/Symptoms of transfusion-associated sepsis includes:

          • Fever >39ºC or 102.2ºF, sometimes hypothermia
          • Rigors
          • Tachycardia >120bpm or >40bpm above baseline
          • Rise or fall of systolic BP 30mmHg
          • Abdominal pain or back pain
          • Nausea and vomiting

          Remember that Transfusion-associated Sepsis, Acute Transfusion Hemolytic Reaction, and TRALI can all have similar symptoms.

          SEPSIS: Nursing Actions

          If transfusion-associated sepsis is suspected, the nurse should:

          1. Stop the transfusion immediately
          2. Check vitals and quickly assess the patient
          3. Notify the Provider (Call an RRT if patient unstable)
          4. Support oxygen and hemodynamic status with oxygen, fluids, etc
          5. Obtain blood work from opposite arm (blood cultures, Coombs test, plastma-free hgb, and repeat crossmatch
          6. Administer ordered antibiotics ASAP (Usually Vanco/Zosyn)
          7. Notify the Blood Bank
          8. Follow any additional orders / administer any additional medications
          Transfusion Associated Sepsis

          Transfusion-Associated Circulatory Overload (TACO)

          Transfusion-Associated circulatory overload, also known as TACO, is when the patient develops acute volume overload after administration of blood products.

          This blood transfusion reaction is fairly common, occurring in up to 1% or more of transfusions. This can occur up to 12 hours after the transfusion is given, and risk factors include patients with:

          • CHF
          • End-Stage Renal Failure (i.e. on dialysis)
          • Extremes of age
          • Small stature & low body weight

          The more units transfused and the quicker transfused, the higher risk of TACO (just like with IV fluids).

          Patients will develop symptoms of respiratory distress which include:

          • Dyspnea
          • Tachypnea
          • Hypoxia
          • Orthopnea

          The patient will also usually develop hypertension.

          Remember TRALI can have similar symptoms, as well as a pulmonary embolism.

          TACO: Nursing Actions

          When TACO is suspected, the nurse should:

          1. Stop the transfusion immediately
          2. Check vitals and quickly assess the patient (pay attention to respiratory status and breath sounds)
          3. Notify the Provider (Call an RRT if patient unstable)
          4. Support oxygen status with supplementary oxygen, BIPAP, or intubation if needed
          5. Make sure a STAT portable CXR is ordered/performed
          6. Administer diuretics as ordered (i.e. 40mg IV Lasix)
          7. Follow any additional orders / administer any additional medications

          In milder cases, the patient may just require diuretics and supplemental oxygen. More severe cases may require Bipap or intubation.

            CLINICAL TIP

          It is a smart idea for the Provider to order 20mg IV Lasix in-between units when multiple units of blood are ordered in someone with a history of CHF or who is very old. If it is not ordered and you feel it may benefit the patient, offer this suggestion to the Provider as it can prevent TACO from occurring.

          “Hey this is Jan calling from Med-surg, I just wanted to make sure you didn’t want any Lasix in-between blood units for Mark Smith in 147-2, as they have a history of CHF?”

          TACO blood transfusion Reaction

          Primary Hypotensive Reactions

          Primary hypotensive reactions are very rare, but occur when there is a sudden drop in systolic blood pressure >30 mmHg within minutes of starting a transfusion.

          The blood pressure normalizes once the transfusion is stopped. While rare, other severe blood transfusion reactions can also have hypotension, so the patient will need to be evaluated to rule those out as well.

          Patients who take an ACE inhibitor like lisinopril are at increased risk for this to occur.

          This is also more common with platelet administration.

          And those are the acute blood transfusion reactions that can occur when administering blood in the hospital.

          Keep in mind that there can also be transmission of infections such as HIV and hepatitis, although very rare and will not present itself during the transfusion or shortly after.


          Kleinman, S., & Kor, D. (2022). Transfusion-related acute lung injury (TRALI). In UpToDate. UpToDate. Retrieved from

          Silvergleid, A. (2022). Approach to the patient with a suspected acute transfusion reaction. In UpToDate. UpToDate. Retrieved from

          Silvergleid, A. (2022). Immunologic transfusion reactions. In UpToDate. UpToDate. Retrieved from

          Silvergleid, A. (2022). Transfusion-associated circulatory overload (TACO). In UpToDate. UpToDate. Retrieved from

          Spelman, D., & MacLaren,G. (2022). Transfusion-transmitted bacterial infection. In UpToDate. UpToDate. Retrieved from

          VTACH + VFIB | A Nurse’s Guide to Ventricular Arrhythmias

          VTACH + VFIB | A Nurse’s Guide to Ventricular Arrhythmias


          William J. Kelly, MSN, FNP-C
          William J. Kelly, MSN, FNP-C

          Author | Nurse Practitioner

          Ventricular arrhythmias like VTACH and VFIB occur in and out of the hospital. The only difference is, people aren’t hooked up to the monitors. So instead of catching the arrhythmia, the patient goes unresponsive.

          VTACH and VFIB are HUGE deals, and these ventricular arrhythmias are deadly! Knowing how to recognize VFIB and VTACH is essential for any nurse in the inpatient or ER setting.

          Check out this nurse's guide to ventricular arrhythmias (VFIB + VTACH)

          What is a Ventricular Arrhythmia (VTACH or VFIB)?

          Ventricular arrhythmias are those originating from the ventricles. Since the ventricles are responsible for pumping blood to the lungs and throughout the body, ventricular arrhythmias are often deadly.

          When talking about ventricular arrhythmias, we are primarily talking about VTACH (ventricular tachycardia), or VFIB (ventricular fibrillation). Ventricular escape rhythm is a backup rhythm for very slow heart rates, but that rhythm won’t be discussed in this article.

          What Causes Ventricular Arrhythmias?

          Ventricular arrhythmias are usually caused by coronary artery disease (CAD). Any lack of blood flow (i.e. a heart attack) will cause ventricular cells to be deprived of oxygen. When the cardiac myocytes become hypoxic, they become irritable and prone to firing when they shouldn’t, which leads to PVCs, VTACH, and even VFIB.

          Other causes of ventricular arrhythmias include:

          • Severe electrolyte abnormalities
          • QT prolongation from medications
          • Aortic stenosis or dissection
          • Blunt chest trauma
          • Genetic or inherited syndromes


          VTACH is a tachycardic rhythm originating within the ventricles. This produces very fast heart rates which may or may not be perfusing.

          AKA they might not have a pulse. 

          If they do have a pulse, the patient may be asymptomatic. More likely they will experience:

          • Chest pain
          • Shortness of breath
          • Dizziness
          • Syncope.

          If VTACH is pulseless, the patient will go unresponsive and be a CODE BLUE.

          VTACH essentially is a “run” of PVCs that just doesn’t stop, or takes some time to spontaneously stop.

          There are different types of VTACH based on its morphology or how it looks. These include Monomorphic VTACH and Polymorphic VTACH.


          Monomorphic VTACH originates from the same ventricular focus. This means that the same ventricular cells or region of cells are functioning as the pacemaker for this rhythm.

          They create the impulse, and the rest of the heart follows the lead.

          Monomorphic VTACH will have the following features:

          • Regular (R-R interval)
          • HR 100-330bpm (often near 200)
          • Wide QRS (>140ms or 3.5 small boxes)

          P waves are absent in 40% of cases, but sometimes can be seen in no relation to the QRS complex (termed AV dissociation).

          This means you may be able to see superimposed P waves throughout the VTACH.

          AV Dissociation is found in 60% of monomoprhic VTACH, with visible p waves superimposed on the rhythm, as well as occasional fusion and capture beats

          The morphology of Monomorphic VTACH will look different depending on which ventricle it originates from – the left or the right.

          Knowing the difference between these doesn’t exactly matter because the management is exactly same. Just be aware that there can be more than one general “look” to Monomorphic VTACH.

          Torsades De Pointes is a polymorphic VTACH that occurs due to QT prolongation


          Torsades De Pointes is a polymorphic VTACH that occurs due to QT prolongation

          Polymorphic VTACH originates from multiple different ventricular foci.

          This means that different ventricular cells or regions of cells are sending electrical impulses picked up by the rest of the heart. This leads to an irregular deadly rhythm.

          Polymorphic VTACH has the following features:

          • Irregular
          • Wide but differing QRS morphologies
          • No distinguishable P waves

          Torsades creates a ribbon-like effect, where it looks like it’s twisting in on itself.

          The most common polymorphic VTACH is called Torsades De Pointes which literally means twisting of the points. This is usually caused by a prolonged QT interval, often from electrolyte abnormalities or medications.

          Torsades de Pointes is an unstable rhythm and often will degenerate into VFIB.

          QT Prolongation

          QT prolongation is the main cause of Torsades and is defined when the QT interval is >440ms in men and >460ms in women.

          However, dangerous ventricular arrhythmais are unlikely to occur until >500ms.

          QT prolongation is caused by:

          • Electrolyte abnormalities: Hypomagnesemia, hypokalemia, hypocalcemia
          • Medications (Antipsychotics, certain antibiotics, antiemetics)
          • Ischemia
          • Congenital or acquired disorders


          VFIB is similar to polymorphic VTACH, but on a much wider scale. Essentially, all of the ventricular cells are irritable and it produces a disorganized chaotic arrhythmia that does not perfuse the body and is a CODE BLUE.

          This will degenerate into asystole unless rapidly reversed.

          VFIB is usually caused by CAD, with active or previous myocardial infarction being a primary cause. The other causes of ventricular arrhythmias like severe electrolyte abnormalities, hypoxia, or trauma (See Hs & Ts below).

          VFIB has the following features:

          • Irregular
          • No organized pattern

          There is either coarse (>3mm amplitude), or fine (<3mm amplitude) fibrillation.


          Okay – so now we know how to identify these rhythms, but what do we actually need to do about them?

          Well first off – know that you will NOT be dealing with this alone.

          These situations are true emergencies, and a Code Blue or RRT should be called, and various other nurses and Providers should show up to manage the arrhythmia.

          Secondly, the management of these emergent arrhythmias is extensively overviewed in ACLS, which hopefully your unit will enroll you in.

          ACLS guidelines should always be followed, and you can review those here. But I do want to briefly outline 5 basic steps when dealing with a dangerous ventricular arrhythmia within the hospital setting.

          1. Check for a Pulse / Breathing

            If you see a ventricular arrhythmia on the monitor, you should immediately assess your patient first. This involves going to their room (preferably running), and seeing if they’re responsive and awake.

            Check carotid pulse and check for breathing when finding your patient unresponsiveIf they are not responsive, immediately assess for a carotid pulse and check for breathing at the same time. This is the first step in BLS and ACLS.

            In true VFIB, the patient will always be unresponsive and pulseless. Sometimes if they take their lead wires off then artifact can look like asystole or VFIB.

            VTACH is hit or miss. Sometimes the patient will be completely asymptomatic and “fine”, but this isn’t a sustainable rhythm and can degenerate quickly into VFIB.

            If VTACH is pulseless, it’s treated just like VFIB.

          2. Call an RRT or Code Blue

            Code cart for RRT or Code BluesIf the patient is pulseless, call for help and call a CODE BLUE.

            If the patient has a pulse but in VTACH, an RRT should be called as this is still an emergent rhythm and the patient can go down at any minute.

            Calling these codes within the hospital is the equivalent of “activating the emergency response system” in BLS.

            This will get everyone who needs to be there ASAP. Hopefully an ICU attending as well as nurses will come to help the Code or RRT.

          3. Start CPR if Needed

            High-quality CPR is essentialIf the patient is pulseless, when you scream out for help, immediately start compressions.

            High-quality compressions are super important in bringing the patient back to a perfusing rhythm.

            As taught in ACLS, compressions should be at a rate of 100-120bpm, at least 2 inches or ⅓ depth of the chest.

            30 compressions for every 2 breaths until the patient is intubated, and then continuously.

          4. Give Life-Saving Treatment

            Which medications and treatments given will depend on whether we are dealing with VTACH with a pulse, or pulseless VTACH or VFIB.

            Defibrillation is the ultimate goal with unstable or pulseless ventricular arrhythmias because defibrillation can restore a perfusing rhythm.

            Each minute you wait, the chances of restoring a perfusing rhythm drop dramatically.

            Epinephrine is always given in pulseless codes as well, 1mg IV every 3-5 minutes.

            Antiarrhythmics are important during ventricular arrhythmias that can also chemically convert the patient’s heart rhythm. Amiodarone is most often recommended, but sometimes lidocaine or others can be given.

          5. Reverse any known causes (Hs & Ts)

            In ACLS you are taught all about Hs and Ts.

            Basically, this is an acronym to help you brainstorm potential causes for these deadly arrhythmias (as well as asystole or PEA).

            You can read more about the Hs & Ts below.

            Once potential causes are found, these should actively try to be reversed.

          REVERSIBLE Hs & Ts

          Hypovolemia from hemorrhage or shock can cause cardiac arrest, although must be severe

          Hypoxia from pulmonary embolisms or respiratory failure

          Hydrogen Ions aka acidosis from severe DKA or respiratory failure

          Hyperkalemia, usually secondary to severe ESRD or AKI

          Hypokalemia, usually from severe GI losses, diuretics, and decreased Intake

          Hypothermia, usually from environmental exposures, hypoglycemia, or severe sepsis

          Tension Pneumothorax usually from penetrating trauma or spontaneous

          Tamponade (cardiac), usually from chest trauma, MI, or pericarditis

          Toxins such as overdoses from opioids, benzos, TCAs, BB, or CCB

          Thrombosis such as large pulmonary embolisms or myocardial thrombosis / infarction

          Hopefully this gave you a solid understanding of V TACH and VFIB, and your role as the nurse to help manage these deadly ventricular arrhythmias.

          If you want to learn more, I have a complete video course “ECG Rhythm Master”, made specifically for nurses which goes into so much more depth and detail.

          With this course you will be able to:

          • Identify all cardiac rhythms inside and out
          • Understand the pathophysiology of why and how arrhythmias occur
          • Learn how to manage arrhythmias like an expert nurse
          • Become proficient with emergency procedures like transcutaneous pacing, defibrillation, synchronized shock, and more!

          I also include some great free bonuses with the course, including:

          • ECG Rhythm Guide eBook (190 pages!)
          • Code Cart Med Guide (code cart medication guide)
          • Code STEMI (recognizing STEMI on an EKG)

          Check out more about the course here!


          Burns, E. (2019). Polymorphic VT and Torsades de Pointes (TdP). In ECG Library. Retrieved from https://

          Burns, E. (2019). Ventricular Fibrillation (VF). In ECG Library. Retrieved from

          Burns, E. (2020). Ventricular tachycardia – Monomorphic VT. In ECG Library. Retrieved from

          Dubin, D. (2000). Rapid Interpretation of EKG’s: An interactive course (Sixth edition., pp. 154157). Tampa, Fla.: Cover Pub. Co.

          Ganz, L. I., Buxton, A. (2020). Sustained monomorphic ventricular tachycardia: Clinical manifestations, diagnosis, and evaluation. In UpToDate. Retrieved from

          Ganz, L. I., Buxton, A. (2020). Sustained monomorphic ventricular tachycardia in patients with structural heart disease: Treatment and prognosis. In UpToDate. Retrieved from

          Grauer, K., MD. (2014). ECG Pocket Brain: Expanded Version (6th ed., pp. 73-74). Gainesville, FL: KG/EKG Press.

          Pozner, C. N., & Post, T. W. (2021). Advanced cardiac life support (ACLS) in adults. In UpToDate. UpToDate.

          Prutkin, J. M. (2020). ECG tutorial: Ventricular arrhythmias. In UpToDate. Retrieved from

          Zimetbaum, P. J., Wylie, J. V. (2020). Nonsustained ventricular tachycardia: Clinical manifestations, evaluation, and management. In UpToDate. Retrieved from

          Check out this nurse's guide to ventricular arrhythmias (VFIB + VTACH)