How to MASTER the Foley Catheter Insertion + Advanced Tips & Tricks

How to MASTER the Foley

Foley Catheter Insertion + Advanced Tips & Tricks

A foley collection bag half filled with urine

William Kelly, MSN, FNP-C

Author | Nurse Practitioner

What is a Foley Catheter Insertion?

Foley catheter insertion is one of the main procedures you will learn as a nurse in school, and you will have to put in a LOT of foley catheters if you work as a bedside nurse in the hospital. 

The term ‘catheter’ is just a term that refers to a flexible tube that is inserted into a part of the body. Some examples include an intravenous catheter (IV), cardiac catheterization, and urinary catheters.

Foley catheters are also referred to as indwelling urinary catheters. These are essentially just a tube that is inserted into the bladder to allow urine to drain into a bag instead of staying in the bladder.

A foley is intended for both short and long-term use, both within and outside of the hospital. 

Foley catheter insertion Indications

Foley catheter insertions are ordered for various reasons, but long story short. -they are ordered when the patient cannot effectively drain their bladder. It’s also ordered when this is anticipated (like with surgery… see below).

Urinary Retention

An enlarged prostate and urinary retention

Urinary retention With obstruction

Also called a bladder outlet obstruction, this is when something is blocking or obstructing the ability of the bladder to empty.

Common causes include Benign Prostatic Hyperplasia (BPH), tumors, blood clots, or severe constipation. Other causes include infections, scarring, strictures, or trauma. 

An enlarged prostate and urinary retention

Neurogenic Bladder

This is when the bladder doesn’t work normally due to a central cause – aka there’s something with the brain. This could be from a stroke, degenerative diseases like MS, spinal cord injuries, or nerve damage. 

An enlarged prostate and urinary retention

Pharmacologic Urinary Retention

Certain medications can lead to the bladder being unable to fully empty itself, requiring a foley catheter insertion.

Medications that weaken the bladder muscles include anticholinergics like Tricyclic antidepressants and diphenhydramine (Benadryl).

Medications that increase the tone of the prostate and bladder neck include decongestants, stimulants, or other sympathomimetics.

There are many other medications that can cause urinary retention, including muscle relaxers, certain antipsychotics, hormones, or even NSAIDs and opioids

Other Reasons to place a foley catheter

An enlarged prostate and urinary retention

Acute Hematuria

If a patient has significant bleeding in their urine, a foley catheter insertion can be ordered to monitor their output.

When there is significant amount of bleeding, this often clots, causing an obstruction and a distended bladder, along with severe discomfort.

A three-way catheter is usually placed and CBI (continuous bladder irrigation) is started to prevent the patient’s urinary tract from obstructing again. 

An enlarged prostate and urinary retention

Urine Output Monitoring

Patients who need strict I&Os done may have a foley catheter insertion ordered. This is often critically ill patients in the ICU, like with severe CHF or renal failure.

For hourly output, make sure your foley bag has a urometer. This way the urine first drains into the urometer, then each hour can be emptied into the main collection bag.

An enlarged prostate and urinary retention

Intubated Patients or critically ill

Patients who are intubated and many of those who are critically ill are unable to empty their bladder on their own. To prevent skin breakdown as well as monitor their urinary output, foleys can beneficial.

An enlarged prostate and urinary retention

All the Tubes

After intubation, once the endotracheal tube is placed, that isn’t the last tube you have to worry about.

Immediately after intubation, you will need to place a foley catheter, as well as an Nasogastric or Orogastric tube to decompress the stomach and prevent aspiration.

An enlarged prostate and urinary retention

Surgery

Foleys are placed before/during surgery to monitor fluid status and prevent bladder overdistention.

An enlarged prostate and urinary retention

Immobilized patients

Patient’s who are immobilized from spinal cord injuries, strokes, or pelvic fractures often have foley catheters placed.

Hip fractures will almost always be going for surgery anyway, so a foley can help offer quite a bit of comfort.

An enlarged prostate and urinary retention

Open Wounds

If the patient is incontinent and has open sacral or coccygeal wounds, sitting in their urine can make the breakdown worse and make it more difficult to heal. A foley can help promote wound healing in these cases.

An enlarged prostate and urinary retention

Patient Comfort (End of Life)

Patients who are reaching their end of life often are very weak and uncomfortable, and a foley catheter insertion gives them one less thing to worry about and can make them feel more comfortable overall.

An enlarged prostate and urinary retention

Incontinence?

Foley catheters really shouldn’t be used to manage urinary incontinence. This is an inappropriate use of foleys and the potential complications and longer hospital stay outweigh any benefit. 

When to NOT put in a foley?

There really is only one absolute contraindication to a foley catheter insertion, which is trauma with hematuria. This should be managed by a urologist.

There are some relative contraindications, which include urethral strictures, recent UTIs, or artificial sphincters.

Of course, benefits and risks should always be weighed. Introducing anything invasive into the body increases the risk of causing infection, which is very common but can be lethal. See monitoring parameters below.

What are the different types of Urinary catheters?

While this article specifically focuses on foley catheter insertion, there are other types of urinary catheters that work similarly but may be used for alternate scenarios.

An enlarged prostate and urinary retention

Foley Catheter

This indwelling catheter is placed in the bladder and left in place. This foley catheter insertion is ordered when ongoing use is anticipated. It is secured to the patient’s leg and drains into a leg bag or a larger collection bag that hangs on the patient’s bed.

An enlarged prostate and urinary retention

Straight Cath

Sometimes referred to as intermittent bladder catheterization, this is for once or as needed emptying of the bladder. This often ordered for short-term urinary retention, where the benefits of putting in an indwelling foley don’t outweigh the risks (i.e. infection).

This drains into a plastic collection chamber for drainage. Once the urine is completely drained, the catheter is immediately removed

An enlarged prostate and urinary retention

Suprapubic Catheter

This is when a catheter is surgically placed through the peritoneum by a urologist or general surgeon. You’ll see this stitched in place below their belly button. This is placed in some patients with chronic incontinence/urologic issues. Nurses should never replace these.

An enlarged prostate and urinary retention

Three-way Cath

No – this isn’t THAT kind of Three-way…

Also called a triple-lumen catheter, this is essentially a larger catheter that has 3 tips.

  1. The urine drainage port, which is in the middle and is connected to the tubing to drain into the collection bag as usual.
  2. The balloon port, which is used to inflate the 10mL balloon once successfully placed.
  3. An irrigation port, which is not found on regular foley catheters. This allows irrigation to be manually done, or allows CBI (continuous bladder irrigation) to be connected to prevent clotting. 

A three-way is typically only ordered for significant hematuria when clotting and obstruction are occurring or trying to be prevented. 

An enlarged prostate and urinary retention

Coude Catheter

This is a catheter with a special-shaped tip that helps you maneuver past an enlarged prostate. 

An enlarged prostate and urinary retention

Using a Coude

Make sure nurses are able to use coude catheters at your facility. This may be reserved for Providers or Urology to use. 

 There are some alternatives to foley catheter insertion that can sometimes be used. These are non-invasive so they do not carry the same risks as causing infection. These are excellent solutions when the main issue is incontinence.

An enlarged prostate and urinary retention

Texas Catheter

Also called a condom catheter, this fits over a man’s penis that drains incontinent urine into a suction canister. 

An enlarged prostate and urinary retention

Purewick Catheter

This is the same concept but placed in incontinence women attached to suction. 

Choosing a catheter size

Just like IV sizes and gauges, foley catheters have specific sizes as well. For foleys, these sizes are called “French units”. Each french unit increases the size of the diameter of the catheter by 0.33mm

For most adult patients, a 14-16 Fr catheter is standard. If you are worried about obstruction from sediment, a larger size is better. If you are worried about blood clotting, a three-way may be a better option.

Neonatal
3.5 - 5 Fr
Pediatric
6 - 10 Fr
Adult
14 - 16 Fr
Three-way
20 - 24 Fr
An enlarged prostate and urinary retention

kangaroo nasogastric Tubing

Your facility may or may not have specific foley catheters for infants, depending on which facility and unit you work on.

Some units may use the purple kangaroo PVC nasogastric tubing to catheterize infants and toddlers.  These are also sized in French units, so using a 5 french is common. Make sure you are always following facility and unit protocols.

Foley Catheter insertion procedure

 

An enlarged prostate and urinary retention

Collect your Equipment

Make sure you have all of the required equipment for the procedure. This usually includes:

  • Foley catheter insertion tray
    • Foley Catheter connected to tubing & foley bag
    • Lubricant
    • Betadine swabs or solution/cotton swabs/forceps
    • Sterile gloves
  • Cath-secure device or tape
  • Sterile gloves
An enlarged prostate and urinary retention

Prepare the Patient

Make sure to explain the procedure and obtain verbal consent from the patient. Also verify there is an order (verbal or otherwise) to insert the foley.

Ask or help the patient remove everything from the waist down, and place them in a hospital gown. Position them supine.

If they are female, have them extend their legs in a “frog” position. Males can remain with relaxed legs.

An enlarged prostate and urinary retention
Pre-clean and pre-locate
It can be super helpful to clean the peri-area before setting up your equipment. You can do this with soap and water, or bath wipes depending on your facility’s protocol. This area is. notclean enough for most hospitalized patients, but this also gives you an opportunity to visually inspect and pre-locate the urethra.

“If you can find it clean, you won’t miss it sterile!”

An enlarged prostate and urinary retention

Lighting is Everything

Setting up for the actual procedure may be just as important as actually performing it. Make sure you have proper lighting in order to see where you need to go. If the room has one of those adjustable overhead lights, this would work perfectly.

An enlarged prostate and urinary retention

Set up your equipment

Wash your hands and open your foley kit, which is best placed in-between the patient’s legs. Open up the sterile drapes of the kit so you can have access to the sterile contents inside once you get sterile.

An enlarged prostate and urinary retention

Apply Sterile Gloves

Apply sterile gloves as this is a sterile procedure. This minimizes the risk of introducing pathogens into the patient’s bladder, which can cause infection.

An enlarged prostate and urinary retention

Extra Sterile Gloves

The foley tray kit usually comes with gloves, but these are small and not very stretchy, and often rip (especially for someone with larger hands).

This is where an additional pair of sterile gloves come in handy. You can choose your specific size, and these gloves are much stretchier and easier to maneuver (anyone else a 7.5?)

An enlarged prostate and urinary retention

PrEP Sterile Field

Once your sterile gloves are on, utilize the sterile drapes inside the kit to carefully place underneath the patient’s buttock, and place the fenestrated drape over their vagina/penis. Be careful not to touch the patient or bed with your sterile gloves. 

An enlarged prostate and urinary retention

Lubricate the Catheter

Remove the catheter from its plastic covering, and place it inside a sterile lube package. The lubricant will help glide the catheter into the urethra, and placing it in the package will help keep your catheter from flopping around.

Your kit may instead have a pre-filled syringe with lube. If so, this is squirted onto your sterile tray, and stick the catheter in the lube where it isn’t going to fly off.

An enlarged prostate and urinary retention

Attach Syringe to balloon port

Attach the 10mL pre-filled syringe to the balloon port on the foley.

An enlarged prostate and urinary retention

Testing the balloon?

It used to be standard practice to test the balloon by inflating. the full 10mL into the balloon and then allow it to flow back into the syringe. This is no longer recommended and has the potential to stretch and distort the catheter and lead to more trauma during insertion.

An enlarged prostate and urinary retention

Clean with Betadine

Using pre-packaged betadine swabs, or betadine and cotton swabs/forceps, gently cleanse the region surrounding the urethra.

In females, swab in one direction front to back on the left, then the right, and finally down the middle.

In males, swab in one direction around the left side of the glans, then the right, then down the middle. 

An enlarged prostate and urinary retention

Prepare for Insertion

Now that everything is ready, it’s time to get ready to insert the catheter.

In females, spread apart the labia with your non-dominant hand to better visualize the urethra and make sure nothing gets in the way.

In males, retract any foreskin and stabilize the penis between your rounded hand.

An enlarged prostate and urinary retention

Insert the Catheter

Insert the catheter into the urethra with steady force. Advance until you see urine in the tube. Once you do, advance a little more before blowing up the balloon.

A sterile gloved hand holding the vagina open, and inserting a yellow catheter inside the urethra. There is betadine surrounding the urethra and vulva.
A sterile gloved hand holding the penis, and inserting a yellow catheter inside the urethra. There is betadine surrounding the urethra.
An enlarged prostate and urinary retention

If at first you don't succeed...

If you meet resistance, do NOT try to apply more pressure and force it through. Remove it and consult the Provider/urology, as the patient’s prostate is likely enlarged or there are tracts or strictures.

In women, if you don’t see any urine backflow within about 5-6 centimeters, you are likely in the vagina. Do not reuse this same catheter as this will likely cause an infection. Leave the foley in place and get a new sterile kit to retry the procedure. Aim superior to this foley.

An enlarged prostate and urinary retention

Blow up Balloon

Steadily push the 10mL syringe to blow up the balloon. Inflating the ballon should keep it in place within the bladder.

An enlarged prostate and urinary retention

Retract the catheter

Gently pull back on the foley until light resistance is met. This is. to ensure the balloon is resting right at the bladder neck.

An enlarged prostate and urinary retention

Secure the Catheter

Secure the foley to the patient’s thigh using a cath secure, stat-lock, or tape. This is to ensure that the foley doesn’t get caught on anything or cause urethral trauma.

An enlarged prostate and urinary retention

Place Collection Bag

Place the collection bag below the level of the bladder but off of the floor. This prevents backflow which could lead to infection.

An enlarged prostate and urinary retention

Collect / Drain the Urine

Collect any urine that you may need and send it off to lab, otherwise measure and empty the urine, and document accordingly

How to Remove a Foley

Removing a foley should be quick and easy. Verify the order before doing so, or if the patient insists it be removed then remove it regardless (as long as they aren’t confused).

  1. Collect your equipment: You really only need an empty 10mL syringe.
  2. Unsecure the catheter: Remove the catheter from any cath-secure, stat lock, or tape that is securing it to the patient’s leg.
  3. Deflate the balloon: Hook an empty 10mL syringe to the balloon port and drain a full 10mL from the balloon. Remove the syringe.
  4. Remove: Gently pull on the catheter to remove it. There should not be any resistance.
  5. Dispose: Dispose of the foley catheter, tubing, and collection bag into a biohazard bag if possible.

Foley Catheter Assessment & Monitoring

Assessments of the catheter should be performed each shift along with your head-to-toe assessment. If there are any new or related symptoms or discomfort, this should be assessed more frequently.

The biggest thing to watch out for is signs and symptoms of a UTI, as foley catheters increase this risk.

An enlarged prostate and urinary retention

Urine

Assess the urine. Is it draining? What color is it? Is there any blood, pus, or sediment? 

An enlarged prostate and urinary retention

Skin

Is there any skin breakdown, erythema, or discharge near the insertion site?

An enlarged prostate and urinary retention

Tubing/Collection

Assess the tubing and collection bag, checking for any leakage. Make sure it is secure and in place, and that the collection bag always remains below the level of the bladder

An enlarged prostate and urinary retention

s/s of infection?

The main thing you are going to monitor for is the development of infection (UTI) and sepsis from the foley catheter. This is usually evidenced by fevers, tachycardia, and frequently altered mental status in the elderly hospitalized patients. 

Foley Catheter Insertion Complications

During and after foley catheter insertion, be on the lookout for complications that may occur. 

An enlarged prostate and urinary retention

Infection (UTI)

Infections are a common complication of UTIs. While common, UTIs can be severe and even kill patients, so preventing this is very important.

Using sterile technique is super important during the procedure to decrease the risk of infection. Also, make sure the collection bag remains below the level of the bladder at all times to prevent backflow.

An enlarged prostate and urinary retention

Epididymitis

Foley catheters can rarely lead to epididymitis in males and sometimes extend to orchitis (infection and pain of the testicle).

An enlarged prostate and urinary retention

Bladder perforation

While rare, catheters can cause a bladder perforation. If so, the patient will develop extreme pain, bloody urine, and signs of peritonitis (abdomen rigidity and rebound tenderness, etc). 

An enlarged prostate and urinary retention

Bladder stones

Bladder stones can form due to the presence of a foreign body within the bladder. This can lead to obstruction and pain.

Urea-splitting bacteria (like proteus mirabilis and Pseudomonas aeruginosa) are more likely to cause these stones. 

An enlarged prostate and urinary retention

Bladder fistula

A fistula is when a false passage forms between two different organs due to chronic inflammation, such as with a chronic Foley catheter. These are rare but can lead to significant complications, and infections, and will need surgery to fix it.

Foley Catheter Care

Managing a foley catheter after the foley catheter insertion is just one more aspect of the patient that you will need to care for. 

An enlarged prostate and urinary retention

Assessment

The foley should be assessed with each head-to-toe shift assessment. You should be monitoring for things as below. 

An enlarged prostate and urinary retention

Clean Meatus

Clean the insertion area with soap and water daily

An enlarged prostate and urinary retention

Ensure Tubing secure

To secure the tube in place and prevent any urethral trauma, secure the foley to the patient’s leg. Many facilities will have Cath secures, but basic medical tape can also be used instead. 

An enlarged prostate and urinary retention

Collection Bag

Keep the bag below the level of the bladder to prevent backflow. This should be drained often as well.

See if the patient is ordered I&Os, and chart how many mLs are emptied each time. 

An enlarged prostate and urinary retention

Collecting Urine

If a UA is ordered, you can now obtain and send this after the foley catheter insertion. 

Everything online will tell you NOT to use the collection bag to obtain urine samples, as they may be contaminated. But nothing seems to distinguish a foley that was just placed or one that has been already drained and in place for some time.

However, if you just put in the foley, the bag should still be sterile, so some nurses do consider this first urine as a sterile sample. Whether or not this is appropriate is unsure, but always follow your facility protocols.

The recommended method to collect urine from a foley is to clamp the foley and withdraw urine from the collection port with a needle and large syringe, then transfer the urine to a sterile specimen cup.

To learn how to actually interpret the UA results, you can check that out here!

An enlarged prostate and urinary retention

Routine Changing of Foley

There is no reason to change a foley catheter simply based on time. There is no evidence to support routine change, and it is not recommended by the ISDA or the CDC. Foley’s are often ordered to be changed if there is obstruction, it is not working correctly, there is infection, or if it is being discontinued altogether.

And now you know exactly how to place a foley like a pro! Let us know in the comments if you have any other helpful tips or questions!

Download this Article!

If you’d like to download this article in PDF form, click here!

Blood Pressure Crash Course for nurses

Blood Pressure

Crash course for nurses

William Kelly, MSN, FNP-C

Author | Nurse Practitioner

Blood pressure is one of the 5 vital signs, and it is so important to understand what normal and abnormal blood pressures are, and how we manage them (don’t get me started on the “6th” vital sign…).

Within the hospital, vital signs are typically checked every 4 hours, and you will frequently run into both high and low blood pressures.

Low blood pressure is often much more worrisome, and you may want to call an RRT if the BP is significantly low, especially when the patient is altered or has significant symptoms.

High blood pressure is common, but often is not considered a big deal unless VERY high. In these cases, we want to slowly decrease the blood pressure instead of too quickly.

What is Blood Pressure?

As you probably know, blood pressure is not the pressure of your blood, but rather the pressure within your vascular system.

The vascular system refers to your arteries and veins. When speaking of systemic blood pressure, we are specifically talking about the pressure in the arteries. 

This pressure temporarily increases with each heartbeat, and decreases in-between each heartbeat. 

The pressure in your arteries when your heart beats or contracts is called the systolic blood pressure. Systolic just means during the heartbeat. Systolic blood pressure can never be below the diastolic pressure.

When the heart is not beating, the pressure “rests” back to its normal baseline pressure. This is called the diastolic blood pressure. The diastolic blood pressure should never be 0. 

This pressure is measured in millimeters of mercury (mmHg).

“Normal” Blood Pressure

As we said above, systolic is the pressure during contraction of the heart, and diastolic is the pressure in-between beats. When looking at a blood pressure reading, there are two numbers: a numerator and a denominator. The numerator or top number is the systolic blood pressure. The denominator or the bottom number is the diastolic blood pressure.

Normal systolic blood pressures are between 100 – 120 mmHG. Normal diastolic pressures are between 60-80 mm Hg. Traditionally 120/80 mmHg was considered the “gold standard” for blood pressure, but now its recommended to be at most 120/80 mmHg. 

A "Good" Pressure

A “good pressure” is relative. In the ER, a pressure below 160/90 tends to be considered pretty good and usually won’t require any medications. However, a pressure of 160/90 is considered very high if that is the normal daily blood pressure at home, and should be started on medications.

How to Measure Blood Pressure

We check people’s blood pressures in the hospital, in the outpatient office setting, and pretty much every area of patient care. Nowadays, we have machines that do most of it for us. But machines aren’t perfect, and its an essential nursing skill to know how to check blood pressure.

In general, there are 3 main ways to check someone’s blood pressure:

Manual Blood Pressure

A manual blood pressure is checked using a sphygmomanometer and a stethoscope. The stethoscope if placed over the brachial artery, and the cuff is placed on the patient’s bicep.

The cuff is pumped up to about 160 or 180 (in most people unless BP is very high). Slowly release the cuff pressure while you auscultate the brachial artery. 

Systolic blood pressure is identified by the first Korotkoff clicking sound. The diastolic is noted when you can’t hear anything left.

Palpating BP?

You can palpate the patient’s radial artery when a machine or cuff is pumping up or down. When the radial artery disappears, this is your systolic pressure. There is no way to check diastolic with palpation

Automated Blood Pressure

An automated blood pressure is checked by a machine, often a portable Dinamap or a bedside monitor. These machines essentially perform a manual BP on their own.

They have a sensor which detects tiny oscillations from your pulse. So when the pulse goes away – this is your systolic pressure. When the pulse reappears, this is your diastolic pressure.

A-Line Blood Pressure

Arterial lines are commonly placed in the ICU for strict BP monitoring. This is the most accurate way to check a blood pressure because it is directly measured by a sensor within the arteries, instead of indirectly like with the methods above. This gives you real-time changes in blood pressure.

What’s the deal with the “MAP”?

If you’ve been working for a bit, or in clinicals, you may hear about the term “MAP”. While systolic blood pressure is often considered the most important part of the blood pressure, the actual important number is the MAP. 

The MAP stands for Mean Arterial Pressure. This is the average pressure in the arteries from one cardiac cycle (systolic + diastolic). This is measured by a calculation:

But don’t go busting out your calculators. The bedside monitors should automatically calculate this for you, or possibly your EMR. If you need to calculate it, there are plenty of good online calculators to quickly do it. 

MAP is a great indicator of tissue perfusion. If the MAP stays above 65 mmHg, then this should be enough pressure to provide essential tissue perfusion and prevent anoxic injury (injury from a lack of oxygen to the cells!).

Nurses and Providers in the ICU will care much more about MAP than systolic blood pressure, especially when looking at low blood pressures.

Hypertension

Hypertension, also known as high blood pressure, comes in many different forms. While often thought of as “not a big deal”, it really is the silent killer, and can put a lot of strain on the heart, vasculature, and kidneys.

Overtime, this organ damage becomes more pronounced, placing the patient at risk for heart disease, strokes, kidney failure, and more!

Another reason why it’s termed the silent killer is because it often is asymptomatic – meaning there are no symptoms. But just because there aren’t any symptoms doesn’t mean it isn’t dangerous, especially in the long run. 

In medicine, we use JNC8 guidelines to classify and manage hypertension. 

Blood pressure levels include:

Normal: < 120 / 80 mmHg
Stage 1 HTN: 130 – 140 / 80-89 mmHg
Stage 2 HTN: > 140 / 90 mmHg

Normal Blood Pressure Levels

Hypertension can be chronic or acute. Its also important to know if the patient is having any symptoms such as chest pain, SOB, headache, etc.

3 main types of hypertension that we’ll talk about include:

Primary Hypertension

Primary hypertension, previously referred to as essential hypertension, is a chronic hypertension that has no clear cause, but is thought to involve genetic, dietary, and lifestyle factors. This is what most people are diagnosed with when they have high blood pressure. Risk factors include:

  • Increased age
  • Obesity
  • Family History of HTN
  • Black race
  • High sodium diet
  • Excessive ETOH
  • Sedentary lifestyle

Hypertensive Urgency

Hypertensive urgency is a very high blood pressure > 180/110 mmHg. While there is no evidence of organ damage (i.e. lack of symptoms or lab abnormalities), the patient is at risk for organ damage or strokes to occur.

Hypertensive Emergency

Hypertensive emergency is a very high blood pressure > 180/110 mmHg when there IS evidence of organ damage. The patient should have at least one of the following signs or symptoms:

  • Chest Pain or SOB
  • Pulmonary Edema
  • Severe headache, Seizures, or confusion
  • Elevated Troponin
  • Acute Kidney Injury (elevation in creatinine levels)

Treatment of Hypertension:

Treatment of hypertension is often not aggressive, and is often made by slow gradual changes to outpatient medication regimens.

However, if the patient is symptomatic, blood pressure medications should be given. 

At home blood pressures should be checked, as patients BPs are often higher in emergency and urgent care settings, and “White coat hypertension” is common. 

Some oral medications used to lower BP include:

  • ACE Inhibitors like Lisinopril
  • ARBs like Losartan
  • Calcium channel blockers like Amlodipine
  • Beta-blockers like Labetalol
  • Diuretics like Hydrochlorothiazide
  • Alpha blockers like Clonidine

In hypertensive urgency and when in the hospital, sometimes IV medications may be required including:

  • IV Hydralazine
  • IV Cardizem or Nicardipine
  • IV Labetalol
  • IV Lopressor (metoprolol)

In general, blood pressure should never be lowered too fast. In severe cases, the goal should be to lower the MAP by 10-20% within the first hour, then another 5-15% over the next day. In many cases, this is less than 180/120 in the first hour, and less than 160/110 after 24 hours. 

Lowering the blood pressure too quickly can actually cause ischemic damage in patients who have had elevated blood pressure for a long time. Basically the body becomes used to that high pressure, and while it is dangerous to have high blood pressure in general, lowering it too quickly can cause damage as well.

BP & Symptoms

When it comes to blood pressure (and even heart rates while we’re at it), its always important to ask the patient if they have any symptoms. Ask about any CP, SOB, dizziness, palpitations, headache, numbness/tingling/ etc.

Hypotension

Hypotension is when the blood pressure is too low. Low blood pressure is defined as any pressure less than 100/60 mmHg. However, this is often not considered true hypotension until below 90/50 mmHg.

Patients who are small in stature and thin may have borderline low blood pressures at baseline.

Trend Alert

Worried about the patient’s BP? Trend what their BP has been this hospital visit, as well as previous hospital visits. If their BP is 92/48 but they always run around there and are asymptomatic otherwise – this is reassuring.

Remember if the MAP is less than 65 mmHg, this places the patient at risk for tissue ischemia and organ damage. 

Low blood pressure is often a serious sign, especially in the hospital setting. Common causes of hypotension include:

Sepsis

Septic shock is when there is a severe systemic response to infection. These patients will have persistent hypotension despite adequate fluid resuscitation (30ml/kg bolus). They usually require IV vasopressors, a central line, IV antibiotics, and ICU admission.

Anaphylaxis

Anaphylactic shock is a type of distributive shock that occurs with a severe allergy. Release of inflammatory mediators causes massive systemic vasodilation, swelling, and hypotension. This is treated with IV steroids and antihistamines, +/- epinephrine.

Hemorrhage

When the patient loses enough blood, they will become hypotensive. These patients need STAT blood, usually O negative blood that hasn’t been crossmatched. 

Cardiogenic Shock

Cardiogenic shock occurs when the heart can’t keep up with the body’s demand. This can occur in severe CHF or bradyarrhythmias.

Drugs / Medications

Maintenance medications given for blood pressure can cause low BP, especially if taken in wrong doses or if they become toxic. Some other medications have hypotension as a possible side effect such as amiodarone. 

Adrenal insufficiency

Patients with a history of adrenal insufficiency will often require stress-dosed steroids to maintain their blood pressure. 

Severe dehydration

Dehydration needs to be severe before the patient becomes hypotensive. This can occur in those with DKA or diabetes insipidus, or really anything that causes dehydration.

Treatment of Hypotension:

Treatment of hypotension will involve treating the underlying cause, but generally involves 2 steps:

  • IV Fluid boluses: to increase the volume of the blood
  • Vasopressors: To cause constriction of the blood vessels

If fluid boluses do not improve blood pressure, or if the BP drops back again once its done, then the patient may need vasopressors in the ICU.

Depending on the cause, the underlying cause should be addressed, including:

  • Blood for blood loss
  • Antibiotics and fluids for sepsis
  • Steroids for adrenal crisis
  • Steroids & Antihistamines for Anaphylaxis

Wrapping Up

You are going to run into TONS of patients who either have high blood pressure, or low blood pressure. Managing vital signs is a huge part of our jobs as nurses and doctors, and its so important to understand how to manage blood pressure!

Remember these important concepts when it comes to blood pressure:

Double Check the Pressure

Double check your blood pressures. If it doesn’t seem right – check a manual BP. The provider may ask you to do this anyway.

Always ask about Symptoms

If your patients BP is high or low, ask them if they have any symptoms. Focus on any headache, chest pain, shortness of breath, dizziness, lightheadedness, palpitations, syncope, etc.

Trend the Pressures

Remember high blood pressure shouldn’t be corrected too quickly. Look at previous trends. Don’t freak out about blood pressures that are high unless the patient has symptoms. Worry more about low blood pressures!

REFERENCES

Basil, J., & Bloch, M. J. (2022). Overview of hypertension in adults. In T. W. Post (Ed.), Uptodate. https://www.uptodate.com/contents/evaluation-of-and-initial-approach-to-the-adult-patient-with-undifferentiated-hypotension-and-shock

Calder, S. A. (2012). Shock. In B. B. Hammond & P. G. Zimmerman (Eds.), Sheey’s manual of emergency care (7th ed., pp. 213-221). Elsevier.

Gaieski, D. F., & Mikkelsen, M. E. (2022). Evaluation of and initial approach to the adult patient with undifferentiated hypotension and shock. In T. W. Post (Ed.), Uptodatehttps://www.uptodate.com/contents/overview-of-hypertension-in-adults

Roe, D. M. (2015). Cardiac emergencies. In B. A. Tscheschlog & A. Jauch (Eds.), Emergency nursing made incredibly easy! (2nd ed., pp. 97-197). Lippincott Williams & Wilkins.

RSI Intubation for Nurses: Rapid Sequence Intubation

RSI Intubation for nurses

Rapid Sequence Intubation

William Kelly, MSN, FNP-C

Author | Nurse Practitioner

RSI, or Rapid sequence intubation, is the process where we intubate people in the hospital, pre-hospital, and emergency department settings when the patient is awake.

It involves multiple different steps that need to occur to quick succession, to provide first sedation, then paralysis, then insertion of the endotracheal tube into the trachea. 

Learn all about RSI intubation, and specifically what the nurse’s role during an intubation is, and which compications and montioring parameters to watch out for!

RSI intubation: rapid sequence intubation for nurses Featured Image

Indications for RSI Intubation?

So when does a person need intubed? Well, this really depends, but emergent intubations often involve severe respiratory distress

Patients in acute respiratory failure will typically present with:

    Tachypnea

    Increased respiratory rate > 20 rpm

    Hypoxia

    SPO2 < 90%

    Increased WOB

    Increased work of breathing characterized by use of accessory muscles

    Adventitious Breath Sounds

    Presence of abnormal breath sounds including wheezing, crackles, rhonchi, or diminishment

    Other Abnormal Vital signs

    May be present including tachycardia, hypertension, hypotension, fever, or altered mental status

    Tripod position is when a patient is sitting over the bed leaning forward, supporting their upper body with their hands on the knees or another surface. This helps accessory muscles breath more easily, but can be an ominous sign to someone who is in respiratory distress. Think COPD!

    Indications for Rapid Sequence intubation (RSI intubation) includes:

    • Acute Respiratory Failure (from pneumonia, COPD, CHF, Covid, etc)
    • Anaphylactic reaction or Angioedema
    • When the patient cannot protect their airway (severe alcohol intoxication, drugs, etc.)
    • For surgery

    The Nurses Role during RSI

    So what is YOUR responsibility as the nurse?  Well don’t worry, you shouldn’t actually be the one to intubate the patient (although there are some exceptions such as NICU nurses and Flight nurses). 

    The person who placed the Endotracheal (ET) tube is usually a paramedic, physician, and sometimes an advanced practice provider (PA, NP, or CRNA). This is usually:

    • EM Physician but sometimes APP
    • IM Physician
    • Anesthesia

    The nurse’s role is not to physically intubate, but nurses are essential in making sure the intubation goes safely and smoothly. They are also on the front lines to notice and intervene when things go wrong!

    The nurse’s role is to prepare the patient and equipment,  administer the medications, help manage the airway (although this is usually the job of respiratory therapists), and monitor the patient.

    Afterwards, they are required to keep the patient sedated with titratable sedatives.

    It is still important for nurses to understand how the RSI intubation process goes, even if they are not the ones placing the ET tube. It takes a team of nurses, respiratory therapists, physicians, and more to have a successful intubation without any complications.

    Alternatives to RSI intubation

    Are there any alternatives to intubation? Yes and no. 

    There are certainly treatments we can try before jumping to intubation. These include nebulizers, certain IM/SQ meds, a non-rebreather, High-flow nasal cannula, and CPAP or BIPAP.

    However, usually when intubation is decided on, it is when the patient is in impending respiratory arrest, or when the other treatments already aren’t enough. 

    RSI intubation is kind of our last saving measure that we can do to save their life and stabilize their respiratory system. 

    RSI Medications

    Before diving into the steps of RSI, we need to review the important medications that are given during RSI.

    It is the nurses responsibility to draw these up, reconstitute them, and give them. Any medication that a nurse gives, they should know how the medication works, any side effects, and what to monitor for.

    Sedatives

    First we’re going to talk about sedatives. A sedative is a medication that acts as a CNS depressant – essentially putting the patient to sleep. Different sedatives work in different ways. Sometimes, it takes multiple different sedatives at the same time to effectively sedate a patient.

    Sedatives are also called induction agents – inducing sedation in the patient. They also decrease the sympathetic response, making the body better tolerate the overall intubation experience.

    In regards to RSI Intubation, SEDATIVES ARE ALWAYS GIVEN FIRST

    This is because you need to knock the patient out before you paralyze them, as this is a very frightening experience if not. It can also cause tachycardia, hypertension, and increased ICP if you don’t!

    Etomidate

    Etomidate is the most common sedative that will be ordered for RSI intubation. 

    Etomidate does not offer any analgesia, so sometimes fentanyl is added to minimize the SNS stimulation for patients with significant cardiovascular disease or increased ICP patients.

    Etomidate does not really affect blood pressure, but it can cause some mild increase in airway resistance.

    Side Effects & Monitoring

    Myoclonus

    Etomidate can cause myoclonus to occur, which is brief and harmless, but can be mistaken for a seizure.

    Adrenal Suppression

    Etomidate can cause adrenal suppression for 12-24 hours after the injection. This could potentially impact hemodynamic stability (blood pressure), mainly in patients who are at risk such as those with pre-existing adrenal insufficiency or severe sepsis.

    Patients with severe sepsis who are intubated with etomidate and become hypotensive despite fluids and a vasopressor should be given a 1x dose of hydrocortisone 100mg IV.

    Heart Failure Exacerbation

    Etomidate doesn’t cause HF, but patients with pre-existing HF may have exacerbated underlying myocardial dysfunction after administration.

    Versed

    Versed, also called Midazolam, is the most commonly used Benzodiazepine used for sedation for RSI intubation.

    Versed also does not cause analgesia, but is a good choice for patients in status epilepticus because it offers anticonvulsant properties.

    However, it can decrease the blood pressure, so this should be avoided in patients who are hemodynamically unstable.

    Side Effects & Monitoring

    Hypotension

    Versed can cause a decrease in Mean Arterial Pressure (MAP) by 10-25%. This means Versed should generally be avoided in hypotensive patients or those at risk for hypotension (severe sepsis, trauma, etc).

    Ketamine

    Ketamine is a newer sedative used for RSI intubation. It’s structurally similar to PCP, and can cause some interesting side effects. However, it can be a great sedative and analgesic to help with rapid sequence intubation.

    The good thing about Ketamine is it preserves the respiratory drive. This makes it excellent choice for minor procedural sedation where intubation is not needed.

    However, the increased catecholamine stimulation can cause tachycardia, hypertension, and possibly increased ICP, making it a poor choice for head traumas and hypertensive crises, and also those with cardiac ischemia or aortic dissections.

    However, this can be helpful in patients who are hypotensive to increase BP or in severe asthmatics to cause bronchodilation (in theory). 

    Side Effects & Monitoring

    Laryngospasm

    Ketamine increases the risk of laryngospasm, especially in those with history of upper respiratory disease or asthma. This is because ketamine does not suppress pharyngeal and laryngeal reflexes. In this case, it can be helpful to use fentanyl with it

    Ketofol

    Ketofol is the combination of ketamine and fentanyl. This can cause analgesia, sedation, and amnesia, and can be a good choice for patients with severe bronchospasm.

    Increased Cardiac Activity

    Ketamine causes increased stimulation of the sympathetic nervous system, releasing catecholamines leading to tachycardia, hypertension, increased myocardial demand, and even possible cardiac arrhythmias.

    This can be beneficial in patients who are hypotensive, but dangerous for those with active cardiac disease or aortic dissection.

    Emergence Reactions

    Ketamine can cause an “emergence phenomenon” primarily when used for procedural sedation. This is when the patient may experience vivid and/or disturbing dreams as they wake up. Hallucinations and frank delirium may occur postoperatively up to 24 hours. 

    This usually does not happen with patients who are intubated and sedated for over 24 hours.

    Propofol

    Propofol is a common sedative, and a frequent agent of choice for maintaining sedation with a slow titratable drip. It has a characteristic appearance of milk.

    Propofol is the drug that Michael Jackson was found to have overdosed on. It causes deep sedation and does diminish the patients respiratory drive.

    Propofol has the following actions on the body:

    • Decreases airway resistance: Good for bronchospasm
    • Neuro-Inhibition: Good for intracranial pathology
    • Suppresses SNS: Good for hypertension, bad for hypotension & conditions which decrease cerebral perfusion

    Propofol IV Push?

    Make sure your specific state and facility allow RNs to give IV boluses of propofol, and if so, make sure the provider is always at the bedside. Since propofol causes deep sedation, it may not be within your scope as a nurse to push it. Seems silly, but always protect your license!

    Side Effects & Monitoring

    Hypotension

    Propofol has a blood pressure lowering effect, which can decrease the MAP by 10%, but sometimes even ≥ 30%.

    Use caution if the patient has a borderline low pressure or baseline MAP of 60-70 mmHg.

    Patients at risk for hypotension include severe sepsis, trauma, severe aortic stenosis, etc.

    Bradyarrhythmias

    Propofol can cause bradyarrythmias to occur. This is more common with high doses, prolonged duration, and concurrent medications like beta-blockers, paralytics, and opioids. Patients with a history of cardiac disease are at increased risk.

    QT Prolongation

    QT prolongation can predispose your patient to dangerous ventricular arrhythmias like Torsades de Pointes and VFIB. This is more common with:

    • High propofol doses
    • Elderly patients
    • Structural heart disease
    • Congenital Long QT
    • QT prolonging medications
    • Electrolyte Disturbances

    Anaphylaxis

    Anaphylaxis is rare with Propofol but can occur, usually within 5-10 minutes after infusion. Those with a history of soybean or egg allergy are probably fine to take it.

    Soybean Allergy

    Allergy to soybeans or egg used to be a contraindication for receiving propofol, but newer formulations of the drug rarely produce a reaction and are likely safe

    Elevated Triglycerides & Lipase

    Propofol is a lipophilic fatty solution which contains triglycerides. Infusion can lead to elevations in triglycerides and lipase, which usually occurs 2-4 days after initiation. This can lead to pancreatitis, especially in those who are already at risk.

    PRIS

    PRIS stands for Propofol Infusion Syndrome. PRIS is rare but deadly. When occurs, the patient suffers from acute refractory bradycardia which may lead to asystole, and also may have:

    • severe metabolic acidosis,
    • cardiovascular collapse,
    • rhabdomyolysis
    • hyperlipidemia
    • renal failure
    • hepatomegaly

    This is more common with high doses (>4mg/kg/hr) and long duration of use (>48 hours).

    Choosing the Right Sedative

    There are some specific scenarios where one sedative may be more appropriate than others. Regardless, it is always the Providers preference and what they’re familiar with. 

    Head Injury or Stroke

    Etomidate

    Status Epilepticus

    Propofol or Etomidate

    Severe Bronchospasm

    Propofol or Ketamine (+/- fentanyl)

    Cardiovascular Disease

    Etomidate +/- Fentanyl

    Shock

    Etomidate 0.15mg/kg or ketamine 1mg/kg

    Paralytics

    Paralytics, also called neuromuscular blocking agents (NMBAs), are given immediately after the sedative kicks in, which produces a paralyzing effect on the body. This relaxes the patients muscles and makes the intubation easier for the Physician or APP, and minimizes complications.

    Succinylcholine

    Succinylcholine or Sux for short, is the classic paralyzing agent for RSI. It is termed a “depolarizing neuromuscular blocker” because they cause the muscle cells to “fire” or depolarize, but then don’t let the muscles repolarize, leading to paralysis.

    While used in most scenarios, this is contraindicated in conditions which may cause hyperkalemia or may lead to an exaggerated response. This is because even in normal patients, Sux can increase potassium levels by 0.5-1.0 mEq/L.

    These conditions include:

    • Malignant hyperthermia (personal or family history)
    • Neuromuscular disease with denervation (i.e. MS)
    • Muscular dystrophy
    • Stroke > 72h old (especially with significant motor denervation)
    • Rhabdho
    • Significant burn(s) over 72h old
    • Significant Hyperkalemia

    Myesthenia Gravis

    Patients with MG are resistant to Sux, so should be given 2mg/kg

    Side Effects & Monitoring

    Fasciculations

    Sux commonly causes fasciculations of the muscles prior to causing full paralysis.

    This may increase ICP and stimulate emesis leading to aspiration.

    Bradycardia

    A metabolite of Sux can stimulate muscarinic receptors to release acetylcholine, producing bradycardia of the sinus node. This can be treated with atropine.

    Rocuronium

    Rocuronium or “ROC” for short is a “non-depolarizing” NMBA used for sedation for RSI intubation. This is because it is an acetylcholine antagonist, blocking its effects and leading to paralysis.

    ROC is used when Sux is contraindicated as above.

    Some conditions which may decrease the efficacy of the paralysis include:

    • Respiratory alkalosis
    • Hypercalcemia
    • Demyelinating lesions (MS)
    • Peripheral neuropathies
    • Muscle trauma

    Side Effects & Monitoring

    Hypertension

    ROC can increase peripheral vascular resistant and cause a temporary increase in BP. It can also cause transient hypotension in some people. 

    Tachycardia

    ROC can cause temporary tachycardia for about 5 minutes.

    Right-sided HF

    ROC may worsen pulmonary HTN, leading to right-sided heart failure in those who are predisposed.

    Other Paralytics

    Other non-depolarizing paralytics include Vecuronium and Pancuronium, but these are not used as often.

    Vecuronium, shortened to “VEC”, is not used as frequently, as it has a longer onset of action – around 3 minutes. This can be reduced with a smaller “priming” dose.

    RSI INTUBATION PROCEDURE

    Prepare the Patient

    To prepare the patient for RSI intubation, make sure they are positioned in the “sniffing” position, supine with their neck flexed. Placing a towel between their head and neck can help.

    Make sure the patient is getting hyper-oxygenated at the same time, usually with a Non-rebreather or a Bag-valve mask at 100%.

    Respiratory therapists are often in charge of airway along with the Provider.

    Place the patient on the monitor including telemetry, continuous pulse ox, and end-tidal CO2 if possible.

    Explain the procedure to the patient and ensure informed consent is obtained, either written or verbal. Written is often not able to be obtained due to the emergent nature of many intubations.

    If the patient is altered, ensure there is no DNR or DNI order form or POLST. 

    Using a BVM

    If using a BVM hooked up to 100% oxygen, make sure you are squeezing the BVM with each spontaneous breath to ensure the valve opens and the oxygen is given to the patient!

    Prepare the Equipment

    Bring the code cart at the bedside. You don’t necessarily need to hook up the defibrillation pads, but always follow facility protocol.

    Most of the equipment needed will be found in the Airway drawer, usually one fo the last drawers.

    The equipment needed for the actual intubation will be:

    • Laryngoscope
    • ET tube
    • Stylet
    • 10cc syringe
    • Suction Tubing & Yankauer
    • ETCO2 or CO2 detector
    • Stethoscope
    • Bag-valve mask

    Ask the Provider which size ET tube they’ll want, which is often 7.0 for females, and 8.0 for males.

    The stylet will need to be placed inside the ET tube, which is usually cuffed. This will be removed once the Provider gets the tube in the right spot.

    Administer Medications

    The Provider will give you a verbal order for which sedative(s) and paralytic they want.

    Verbally clarify the name and dose, and begin to draw up the medications. You may need to grab these medications from an “RSI kit” in the Accudose, or they may be located in your code cart.

    Usually one of the nurses will assume the “medicine” responsibility while the others are preparing the patient and equipment.

    Some medications will require reconstitution. This means you may need to mix saline with powdered medication to make a solution. Verify the final doses/amounts with another nurse.

    Make sure to accurately label each, so you don’t mix up the sedative and the paralytic!

    Once everyone is ready for the intubation, wait for the Provider’s verbal “ok” to give the medications, and administer the medications as above. Most are given quickly over 5-10 seconds. 

    First the sedative, then once the patient has decreased LOC and you get the next verbal OK from the Provider, administer the paralytic.

    RT should be bagging the patient at this time until the Provider is ready for the intubation. This is usually within 30-60 seconds after administering the paralytic.

    The Intubation

    Your main job is now done, and now you just watch the intubation procedure and monitor the patient, following any verbal orders that are given.

    The Provider will place the ET tube between the vocal cords, typically 21cm deep in women and 23cm in men. This is measured at the teeth.

    Verify Placement

    Immediately after intubation, the tube needs to be verified. This is verified in multiple ways.

    First, a CO2 detector may be attached to the ET tube. Observing color change from purple to yellow indicates CO2.

    If the patient is hooked up to an ETCO2, with each BVM breath, you should see normal CO2 levels near 35-45 mmHg.

    Additionally, someone should listen to all breath sounds listening for equal breath sounds.

    Lastly, the patient should have a portable CXR ordered to verify the placement. The radiologist may recommend pulling out or pushing deeper x amount of cm.

    Maintain Vent + Sedation

    Now the patient is successfully intubated. Your main job now is keeping the patient sedated so that the Ventilator can do its job and breath for the patient.

    This usually involves a continuous titratable drip, often propofol. The patient may also require additional sedatives, analgesics, and sometimes further paralytics.

    Of course, make sure to chart everything and continue to monitor the patient’s vital signs.

    If in the ER or Med-Surg, your goal should be to get that patient admitted/transferred ASAP.

    RSI Intubation Complications

    Unfortunately, not all RSI intubations go smoothly. These are usually emergent procedures and are not done in a controlled environment. 

    As the nurse, you are the first one who is going to notice any complications while monitoring your patient.  It’s important to know what to look out for and how these complications are managed.

    Esophageal Intubation

    This is when the ET tube is in the esophagus instead of the trachea. This becomes obvious when verifying placement.

    When it occurs, the ET tube will be completely removed and the Provider will re-insert the tube with another attempt.

    Gastric Tube

    An OG or NG to suction should be placed in all patients after intubation to decompress the stomach to prevent emesis and to decrease intrathoracic pressure.

    A foley should also be placed.

    Right Mainstem Intubation

    If the ET tube is placed slightly too deep, it will often go into the Right Mainstem Bronchus of the right lung. This is because it is more vertical than the left.

    If left, the patient may have signs of hypoxemia and worsening respiratory status, and if not fixed can cause barotrauma, pneumothorax, and hemothorax.

    Breath sounds should be equal throughout the lobes, but a CXR will need to be done to verify this isn’t the case. 

    Treatment involves pulling out the ET tube per radiologists recommendations, which the Provider should do.

    Perforation

    A traumatic insertion can cause perforation of the esophagus or trachea. This is very rare, but severe.

    Signs include presence of subcutaneous emphysema in the mediastinum, and worsening respiratory status.

    A CXR may show pneumomediastinum, subcutaneous emphysema, and possible pneumothorax.

    Blood Transfusion Reactions: A Comprehensive Nursing Guide

    Blood Transfusion Reactions: A Comprehensive Nursing Guide

    William J. Kelly, MSN, FNP-C
    William J. Kelly, MSN, FNP-C

    Author | Nurse Practitioner

    Blood transfusion reactions are common within the hospital setting because so many blood products are given. Transfusing blood products that are lacking or actively being lost (i.e. GI bleed) is literally life-saving treatment.

    In this article, we will talk about the different blood products, why they are given, and then dive into each type of blood transfusion reaction, what causes them, their signs and symptoms, and how to manage them as the nurse.

    Acute Hemolytic Transfusion Reaction

    What are blood products?

    There are multiple different blood products that are transfused within the hospital, and each one can have adverse reactions called blood transfusion reactions.

    Packed Red Blood Cells (PRBCs)

    Packed Red Blood Cells or PRBCs are given to patients when their hemoglobin levels are low. This is called anemia. Some common causes of anemia that may need a transfusion include:

    • Acute and chronic blood loss (i.e. GI Bleed)
    • Untreated ongoing Anemia (Iron-deficiency anemia)
    • Destruction of blood cells
    • Decreased production of red blood cells (i.e. Chemotherapy, aplastic anemia)

    PRBCs are usually ordered when hemoglobin levels drop below 7g/dL, but it depends on the nature of the patient’s anemia as well as their medical history and their hemodynamic stability (are their vital signs normal?)

    1 to 2 units will be ordered of PRBCs depending on how low the patient’s hemoglobin level is, as well as if there is active blood loss. Each unit of PRBCs should increase the hemoglobin by about 1g/dL.

    Before blood products are given, a type and screen is done to verify the patient’s blood type and screen for any antibodies that may require special blood. The exception is if the patient has significant ongoing hemorrhage and the patient needs emergent blood. In this case, O Negative blood is given as they are the universal donor.

    Each unit of blood will take about 2 hours to transfuse, but the maximum amount of time is 4 hours when the blood will expire. In emergencies, blood can be run as fast as needed, often with pressure bags.

    Fresh Frozen Plasma (FFP)

    Fresh Frozen Plasma or just Plasma is the portion of whole blood that doesn’t include the red blood cells, which contains clotting factors.

    Some reasons FFP may be ordered for your patient include:

    • Massive blood transfusions
    • Severe liver disease or DIC
    • Coumadin with bleeding or surgery (in addition to Vitamin KL when Kcentra not available)
    • Factor deficiency with bleeding or surgery

    In massive transfusions, you replace 1 unit of FFP for every unit of PRBCs replaced (along with 1 unit of platelets).

    Platelets

    Platelets are a blood product that help the body form blood clots and prevent bleeding.

    These can often become low from various autoimmune disorders, cancers and chemotherapies, medication reactions, and liver disease.

    Platelets are replaced when platelet levels are low, termed thrombocytopenia. Platelets are usually ordered for:

    • Active bleeding with platelet count <50,000/microL
    • Thrombocytopenia in need of invasive procedure or surgery
    • To prevent spontaneous bleeding, usually when platelet levels <10,000/microL

    Most platelets that are given are obtained by “apheresis”. One apheresis unit is equal to 4-6 “pooled random donor units”. 1 unit of platelets by apheresis should increase the platelets by about 30K.

    Why are Blood products Given?

    Blood products are given whenever the blood levels are too low, or when there is acute bleeding. While this will depend on each specific patient and clinician, blood products are generally given when:

    • PRBCs are given when hemoglobin is below 7 or there is ongoing blood loss with hemodynamic compromise
    • Platelets are given when active bleeding with levels <50K, or when <10K.
    • FFP is given with massive blood transfusions, severe liver disease or DIC, or as a coumadin reversal option.

    Blood Transfusion Reactions

    As with any medication or fluid, there are possible adverse reactions that can occur and that you need to monitor for.

    Because we are infusing blood products from a donor, this adds an increased risk of adverse reactions to occur.

    Because of this, nurses must monitor their patients very closely during blood product transfusions. The nurse must stay with the patient the first 15 minutes of a blood transfusion (may change depending on specific facility protocol), and frequently check vital signs.

    There are common blood reactions, and then there are more rare and severe reactions that can occur.

    Acute Hemolytic Transfusion Reaction

    An acute hemolytic transfusion reaction is a rare life-threatening blood transfusion reaction to receiving blood, specifically PRBCs.

    This happens when incompatible blood is accidentally infused with the patient. This is why the patient’s blood type is checked in the first place so that an appropriate donor can be given.

    Compatible blood is outlined below:

    Acute Hemolytic Transfusion Reaction

    When having a true acute hemolytic reaction, the patient will quickly experience:

    • Fever and/or chills
    • Severe flank pain or back pain
    • Signs of DIC (like oozing form IV site)
    • Hypotension
    • Urine turning red or brown (hemoglobinuria)

    This is a severe reaction as the patient’s own immune system and the donor’s immune system attack each other, destroying blood products and causing damage in the process. The patient may experience hemodynamic instability including life-threatening hypotension.

    If this reaction occurs, the nurse should:

    Acute Hemolytic Reaction: Nursing Steps

    If an acute hemolytic reaction is suspected, the nurse should:

    1. Stop the blood immediately and check vitals
    2. Hang NS through a patent IV line. Pt should be ordered least 100-200ml/hr to prevent oliguria/renal failure, or boluses if hypotensive
    3. Notify the MD/APP and blood bank, or call an RRT if unstable
    4. Recheck identifying tags and numbers on blood
    5. Administer diuresis as ordered in those at risk for volume overload
    6. Additional testing may include DIC testing and additional blood compatibility and screenings.
    7. Transfer the patient if required

    The Provider should guide treatment, but these are serious reactions and would likely need monitoring in the ICU.

    Your facility should have a specific protocol in the event of significant blood transfusion reactions, which often involves re-testing the patient as well as re-testing the blood unit itself.

    Acute Hemolytic Blood Transfusion Reaction

    Anaphylactic Transfusion Reaction

    An anaphylactic transfusion reaction is a severe allergic reaction to something within the blood product. These are rare, with an estimated 1 in 20-50K transfusions.

    This reaction occurs seconds to minutes after starting the transfusion.

    The recipient is severely allergic to something within the donor blood, which they may have antibodies against, specifically those who are IgA deficient or haptoglobin deficient.

    Signs of an anaphylatic reaction include:

    • Urticaria
    • Wheezing and/or Respiratory Distress
    • Angioedema (facial swelling)
    • Hypotension with/without Shock

    Treatment involves immediately stopping the transfusion, and then treatment with standard anaphylactic medications. These medications include:

    • Solumedrol 125mg IV STAT
    • Benadryl 50mg IV STAT
    • PEPCID 20mg IV STAT
    • IV Fluids

    More significant interventions may be needed, including:

    • Epinephrine .3mg IM STAT +/- IV epinephrine drip with severe bronchospasm or airway edema
    • Vasopressors for hypotension
    • Oxygen and Intubation

    The blood cannot be restarted, and additional testing will need to be performed, and blood from another donor will have to be given.

    Anaphylactic Blood Transfusion Reaction

    Urticarial Transfusion Reaction

    An urticarial transfusion reaction is a less severe allergic reaction to a component within the blood products, but much more common, occurring in 1-3% of blood transfusions. This is an antigen-antibody interaction, usually with donor serum proteins.

    Patients with this blood transfusion reaction will develop urticaria (hives) with no other allergic signs/symptoms such as wheezing, angioedema, or hypotension.

    When an urticarial transfusion reaction occurs:

    1. Immediately stop the transfusion
    2. Check Vital signs and ask the patient for other symptoms (like trouble breathing or facial/throat swelling, dizziness, chest pain, etc)
    3. Notify the Provider
    4. Give IV antihistmine as ordered
    5. Restart blood if hives resolve and no other signs of allergic reaction develop

    When an urticarial transfusion reaction is diagnosed, stop the blood for 15-30 minutes, give IV antihistamine like Benadryl, and then restart the infusion once hives resolve but slowly and cautiously. Check your specific facility’s protocol.

    Urticarial Blood Transfusion Reaction

    Febrile Non-Hemolytic Transfusion Reaction (FNHTR)

    A febrile non-hemolytic transfusion reaction is exactly what it sounds like – the patient develops a fever after/during a transfusion, but they are not experiencing other signs of a hemolytic reaction.

    This is usually due to a systemic response to cytokines which developed during the process of storing the blood.

    These are very common, occurring in .1-1% of all transfusions.

    This fever will occur 1-6 hours after the transfusion begins.

    Signs/symptoms include:

    • Fever (38-39*+ C)
    • Chills
    • Severe Rigors
    • Mild dyspnea

    If the temperature is more than 39°C or 102.2°F, consider a hemolytic transfusion reaction.

    Whenever there is a fever present, the main thing to consider is if this could be the first sign of a more serious transfusion reaction such as a hemolytic reaction, TRALI (see below), or Sepsis.

    If there is just a fever and no other significant reaction is suspected, antipyretics should be be given, usually Acetaminophen 650-975mg PO. The transfusion can usually be continued but monitored closely.

    Future transfusions should be “leukocyte reduced”, which is a process that removes most of the white blood cells within the blood.

    Febrile Non-Hemolytic Blood Transfusion reaction

    Transfusion-Associated Acute Lung Injury (TRALI)

    Transfusion-Associated Acute Lung Injury, known as TRALI, is a rare but one of the severe blood transfusion reactions that can occur after transfusion of a blood product.

    This is when the transfused product activates the recipient’s neutrophils, causing acute lung damage.

    Patients at risk for TRALI include patients with:

    • Liver transplants
    • Chronic ETOH abuse
    • Smokers
    • Volume overload
    • Shock

    The patient will experience sudden and severe respiratory failure during or shortly after a transfusion, but up to 6 hours after the transfusion. This is often associated with:

    • Hypoxia
    • Fever
    • Hypotension
    • Cyanosis

    New bilateral infiltrates on CXR are often seen.

    TRALI: Nursing Actions

    When TRALI is suspected, the nurse should:

    1. Stop the transfusion immediately
    2. Check vitals and ask patient their symptoms
    3. Call an Rapid Response if the patient is in respiratory distress and/or hypoxic/hypotensive (or notify Provider in ED/ICU).
    4. Support oxygen status (oxygen, intubation if needed)
    5. Support blood pressure (fluid boluses, vasopressors if needed)
    6. Notify the Blood Bank
    7. Obtain a Stat portable CXR
    8. Follow any additional orders / administer any additional medications

    Sometimes steroids are given, although evidence is not great.

    These patients may need to be intubated and will likely need to be transferred to the ICU and closely monitored.

    They do not seem to be at increased risk for TRALI to occur again with a different transfusion in the future, however, donors who are implicated are banned from donating ever again.

    TRALI

    Transfusion-Associated Sepsis

    Transfusion-Associated Sepsis is a life-threatening blood transfusion reaction that can occur with the administration of contaminated blood products which are infected with bacteria.

    The patient will start developing signs or symptoms within 5 hours after the infusion, but usually around 30 minutes.

    Signs/Symptoms of transfusion-associated sepsis includes:

    • Fever >39ºC or 102.2ºF, sometimes hypothermia
    • Rigors
    • Tachycardia >120bpm or >40bpm above baseline
    • Rise or fall of systolic BP 30mmHg
    • Abdominal pain or back pain
    • Nausea and vomiting

    Remember that Transfusion-associated Sepsis, Acute Transfusion Hemolytic Reaction, and TRALI can all have similar symptoms.

    SEPSIS: Nursing Actions

    If transfusion-associated sepsis is suspected, the nurse should:

    1. Stop the transfusion immediately
    2. Check vitals and quickly assess the patient
    3. Notify the Provider (Call an RRT if patient unstable)
    4. Support oxygen and hemodynamic status with oxygen, fluids, etc
    5. Obtain blood work from opposite arm (blood cultures, Coombs test, plastma-free hgb, and repeat crossmatch
    6. Administer ordered antibiotics ASAP (Usually Vanco/Zosyn)
    7. Notify the Blood Bank
    8. Follow any additional orders / administer any additional medications
    Transfusion Associated Sepsis

    Transfusion-Associated Circulatory Overload (TACO)

    Transfusion-Associated circulatory overload, also known as TACO, is when the patient develops acute volume overload after administration of blood products.

    This blood transfusion reaction is fairly common, occurring in up to 1% or more of transfusions. This can occur up to 12 hours after the transfusion is given, and risk factors include patients with:

    • CHF
    • End-Stage Renal Failure (i.e. on dialysis)
    • Extremes of age
    • Small stature & low body weight

    The more units transfused and the quicker transfused, the higher risk of TACO (just like with IV fluids).

    Patients will develop symptoms of respiratory distress which include:

    • Dyspnea
    • Tachypnea
    • Hypoxia
    • Orthopnea

    The patient will also usually develop hypertension.

    Remember TRALI can have similar symptoms, as well as a pulmonary embolism.

    TACO: Nursing Actions

    When TACO is suspected, the nurse should:

    1. Stop the transfusion immediately
    2. Check vitals and quickly assess the patient (pay attention to respiratory status and breath sounds)
    3. Notify the Provider (Call an RRT if patient unstable)
    4. Support oxygen status with supplementary oxygen, BIPAP, or intubation if needed
    5. Make sure a STAT portable CXR is ordered/performed
    6. Administer diuretics as ordered (i.e. 40mg IV Lasix)
    7. Follow any additional orders / administer any additional medications

    In milder cases, the patient may just require diuretics and supplemental oxygen. More severe cases may require Bipap or intubation.

      CLINICAL TIP

    It is a smart idea for the Provider to order 20mg IV Lasix in-between units when multiple units of blood are ordered in someone with a history of CHF or who is very old. If it is not ordered and you feel it may benefit the patient, offer this suggestion to the Provider as it can prevent TACO from occurring.

    “Hey this is Jan calling from Med-surg, I just wanted to make sure you didn’t want any Lasix in-between blood units for Mark Smith in 147-2, as they have a history of CHF?”

    TACO blood transfusion Reaction

    Primary Hypotensive Reactions

    Primary hypotensive reactions are very rare, but occur when there is a sudden drop in systolic blood pressure >30 mmHg within minutes of starting a transfusion.

    The blood pressure normalizes once the transfusion is stopped. While rare, other severe blood transfusion reactions can also have hypotension, so the patient will need to be evaluated to rule those out as well.

    Patients who take an ACE inhibitor like lisinopril are at increased risk for this to occur.

    This is also more common with platelet administration.

    And those are the acute blood transfusion reactions that can occur when administering blood in the hospital.

    Keep in mind that there can also be transmission of infections such as HIV and hepatitis, although very rare and will not present itself during the transfusion or shortly after.

    REFERENCES

    Kleinman, S., & Kor, D. (2022). Transfusion-related acute lung injury (TRALI). In UpToDate. UpToDate. Retrieved from https://www.uptodate.com/contents/transfusion-related-acute-lung-injury-trali

    Silvergleid, A. (2022). Approach to the patient with a suspected acute transfusion reaction. In UpToDate. UpToDate. Retrieved from https://www.uptodate.com/contents/approach-to-the-patient-with-a-suspected-acute-transfusion-reaction

    Silvergleid, A. (2022). Immunologic transfusion reactions. In UpToDate. UpToDate. Retrieved from https://www.uptodate.com/contents/immunologic-transfusion-reactions

    Silvergleid, A. (2022). Transfusion-associated circulatory overload (TACO). In UpToDate. UpToDate. Retrieved from https://www.uptodate.com/contents/transfusion-associated-circulatory-overload-taco

    Spelman, D., & MacLaren,G. (2022). Transfusion-transmitted bacterial infection. In UpToDate. UpToDate. Retrieved from https://www.uptodate.com/contents/transfusion-transmitted-bacterial-infection

    I&D: How to perform an Incision & Drainage

    I&D: How to perform an Incision & Drainage

    William J. Kelly, MSN, FNP-C
    William J. Kelly, MSN, FNP-C

    Author | Nurse Practitioner

          

    An I&D or Incision and Drainage is a procedure that is done to treat infections that have turned into abscesses.

    Knowing how to perform an I&D is important for a nurse practitioner in most settings, but especially in the ER or Urgent Care.

    Learn how to do an I&D (Incision and drainage) including step-by-step instructions how to drain an abscess, antibiotic selection, whether or not to pack the abscess, and discharge instructions

    What is an I&D?

    An I&D or Incision and Drainage is performed when there is an accumulation of fluid within the body that needs to be drained.

    This is usually from a skin abscess.

    An I&D is performed in urgent cares, emergency departments, or in outpatient clinics like general surgery.

    Patients with an abscess will usually complain of pain, welling, and redness of the affected area.

    Abscesses can occur anywhere on the body, but commonly occur:

    • In the axillae (armpits)
    • On the upper legs and buttock
    • Pilonidal region (above the buttcrack)
    • On fingertips next to nail (termed paronychia)

    While anyone can get an abscess, these are more common in those with poor hygiene, as well as those who are immunocompromised.

    Diabetics and patients who are obese are also at risk for abscess formation.

    When To Do an I&D?

    An I&D is performed to drain purulent fluid (pus) from the body.

    These collections of pus are termed “abscesses”, and draining them is the best way to treat the infection, as well as preventing the abscess from getting bigger and causing a more serious infection.

    If there is no fluctuance palpated (fluid felt underneath the skin), then a trial of PO antibiotics can likely be used without having to do an I&D.

    Most cases of obvious abscesses will benefit from an I&D.

    There are certain abscesses that require the expertise of a surgeon to drain. These include:

    • Perirectal or perianal abscesses
    • Anterior and lateral neck abscesses
    • Hand abscesses (except paronychia)
    • Abscesses adjacent to vital nerves or blood vessels
    • Abscesses in the center of the face
    • Breast abscesses near the areola and nipple

    It is also best for abscesses >5cm to be drained and managed by a surgeon.

    I&D and ANTBIOTICS

    While antibiotics can help for skin infections like cellulitis, they often won’t be able to fully treat an infection if an abscess is there.

    This is why an I&D is necessary.

    Young, healthy patients who are not immunocompromised do not need antibiotics if an I&D is performed on a small abscess < 2cm.

    Most others will require systemic antibiotics including:

    • Deep abscesses like in the abdomen
    • Multiple abscesses
    • Significant surrounding cellulitis
    • >2cm in size

    However, these antibiotics likely won’t work without also performing an I&D!

    Which Antibiotics?

    Like skin infections, most abscesses are caused by staphylococcus aureus and other gram-positive bacteria.

    However, MRSA is very common, especially with abscess formation. This means that standard antibiotics for cellulitis like Keflex may not work.

    Antibiotic selection should cover MRSA

    MRSA-covering PO agents include:

    • Bactrim 1-2 tabs BID x 10 days
    • Doxycycline 100mg BID x 10 days
    • Minocycline 100mg BID x 10 days
    • Clindamycin 300mg q6-8h x 10 days
    • Linezolid 600mg BID x 10 days (expensive)

    Perirectal abscesses that are drained will need additional coverage for gram-negative bacilli and anaerobes, so options include:

    • Add Augmentin to the MRSA-covering agents above
    • Add Levaquin AND Flagyl to the MRSA-covering agents above
    • Add Cipro to Clindamycin

    Severe infections and abscesses that require inpatient admission would be started on IV Vancomycin +/- Cipro/Flagyl or Zosyn.

    Aerobic and anaerobic cultures should be obtained and sent to the lab to guide antibiotic use.

    Patients at risk of bacterial endocarditis should be started on antibiotic prophylaxis. These should be given 1 hour prior to the I&D.

    Bacterial Endocarditis Prophylaxis

    Antibiotic prophylaxis is given to certain people at risk for developing bacterial endocarditis. These oral antibiotics should be given 1 hour prior to the I&D.

    Antibiotic prophylaxis should be given for patients with:

    • Prosthetic heart valves
    • Rheumatic heart disease
    • Unrepaired congenital heart disease
    • H/o infective endocarditis
    • Central lines

    Antibiotic prophylaxis for bacterial endocarditis include:

    • Bactrim
    • Doxycycline and amoxicillin
    • Minocycline and amoxicillin
    • Clindamycin

    HOW TO PERFORM AN I&D

    1. Collect your Equipment

    An I&D is an invasive procedure and will require some equipment.

    An I&D is also considered a clean procedure, so you do not need sterile gloves or a sterile field, although some do still utilize sterile technique.

    Your facilities may have kits put together which contain much of what you need for the I&D.

    I&D Equipment

    I&D KitPPE
    • Scalpel (#11)
    • Betadine or CHG
    • 4×4 Gauze
    • Curved hemostats
    • Scissors
    • Clean or Sterile Gloves
    • Gown
    • Face shield (trust me)
    ANESTHETICIRRIGATION
    • 1-2% Lidocaine
    • 3-5 cc syringe
    • Blunt needle
    • 25-30g needle
    • 1-2% Lidocaine
    • 3-5 cc syringe
    • Blunt needle
    • 25-30g needle
    PACKING & DRESSINGCulture Swabs
    • Iodoform or plain gauze packing tape
    • ABD pad and gauze
    • Tape
    • Aerobic swab
    • Anaerobic swab

    3. Anesthetize

    Before you make the incision, you should anesthetize the area you are going to cut.

    Abscesses are already irritated and will be very painful.

    Unfortunately, lidocaine doesn’t work as well as usual because abscesses are an acidic environment.

    Draw up your 1-2% lidocaine into your 3cc syringe with a blunt needle.

    Switch out to the smaller gauge needle (25-30g) and prime the lidocaine. You are now ready to infiltrate.

    You have a few options when it comes to HOW you are going to anesthetize the area.

    Linear Block

    For smaller abscesses <5cm, locally infiltrate the lidocaine in a line where the incision will be, across the entire length of the abscess. This will be painful for the patient.

    Incisions should be made along the lines of the body that have decreased tension to reduce scarring.

    Local infiltration involves sticking the needle just underneath the epidermis, and injecting a small amount of lidocaine while you gently pull the needle back out.

    You are infiltrating the subcutaneous tissue, but not deep enough to actually inject into the abscess itself.

    This is done multiple times until the projected line where you will cut is fully infiltrated.

    After 3-5 minutes, you can begin the incision.

    Field Block

    For larger abscesses >5cm, the linear approach above should be used, IN ADDITION to a ring or field block.

    A field block is achieved by injecting a ring of subcutaneous 1% lidocaine around the abscess, approximately 1cm peripheral to the erythematous border.

    Remember the max dose of lidocaine is 4.5mg/kg
    (max 300mg)

    This means for lidocaine 1% (10mg/mL) the max dose would be 30mL in most adults over 65kg – you hopefully should not be using anywhere near this amount.

    Lidocaine should start working in 45-90 seconds, but you should give it 3-7 minutes to fully kick with an abscess.

    Tips to Decrease pain with lidocaine

    • Buffer the lidocaine with 9:1 ratio (lidocaine to 8.4% bicarb)
    • Use a smaller needle
    • Inject slowly
    • Use room temperature lidocaine
    • Stimulate adjacent skin
    • Ring block/field block technique as above

    4. Make the Incision

    Once you have given enough time for the lidocaine to work (3-5 minutes), make a linear incision with the scalpel.

    This needs to be deep enough to penetrate the abscess wall, but not too deep to cause injury.

    It helps if you have 4×4 gauze in the other hand, as purulent fluid will usually immediately start gushing out.

    Cut the entire length of the abscess, as not making a wide enough incision is one of the main causes of a recurrent abscess.

    5. Obtain Cultures

    Young healthy patients with small abscesses <2cm who won’t get antibiotics don’t need cultures obtained.

    Patients started on antibiotics should have cultures obtained if:

    • Significant cellulitis
    • Systemic symptoms like fevers
    • History of recurrent abscesses
    • Failure of initial antibiotics
    • Very young or old
    • Immunocompromised

    Make sure to obtain swabs for both aerobic and anaerobic gram stain and culture.

    6. Loculations & Irrigation

    Abscesses have a tendency to become loculated. This means there can be individual pockets of pus within the abscess itself.

    To “break these up”, insert a hemostat into the incision and open it up in all directions in order to break up any possible loculations. This is often painful.

    Draw up sterile saline with the 20-60cc syringe, attach the splash guard or IV catheter, and irrigate the incision to effectively clean out the abscess.

    This is best practice although not always performed, especially for smaller abscesses.

    7. Pack wound (optional)

    I&D incisions are almost never closed with sutures but are left open to heal by “secondary intention”, meaning naturally.

    Sometimes packing should be used.

    Packing is when you insert special gauze into the wound that promotes drainage.

    Packing is generally recommended for:

    • Abscesses >5cm
    • Pilonidal abscesses
    • Immunocompromised / diabetics

    If you decide to pack the wound, do not over-pack the wound too tightly. This increased pressure can cause tissue damage.

    Gently insert the iodoform ribbon into the wound with a blunt object such as a cutip swab. This does not have to “stuff” the wound. Leave a 1cm tail outside of the wound.

    Cover the packing with an absorbable dressing.

    Patients with packing will need to return for a wound check-in 2 days. If there is still significant drainage, more packing can be placed.

    Discharge Instructions

    Before discharge, make sure their tetanus is uptodate.

    I&D without packing should soak in warm soapy water 2-3 times per day, and f/u in 7-10 days or sooner if systemic signs of infection present.

    I&D with packing should return in 24-48 hours. Once packing is removed and the drainage stops, warm soapy soaks can be started.

    REFERENCES

    Approach to management of drainable abscess or skin infection with purulent drainage in adults. (2021). UpToDate. Retrieved September 7, 2021, from https://www.uptodate.com/contents/image?imageKey=ID%2F114919&topicKey=ID%2F110530
    Graphic 114919 Version 10.0

    Buttaravoli, P. M., & Leffler, S. M. (2012). Cutaneous Abscess or Pustule. In Minor emergencies (3rd ed., pp. 655-659). Saunders.

    Downey, K. A., & Becker, T. (2021). Techniques for skin abscess drainage. In T. W. Post (Ed.), UpToDate. https://www.uptodate.com/contents/techniques-for-skin-abscess-drainage

    Sexton, D. J., & Chu, V. H. (2021). Antimicrobial prophylaxis for the prevention of bacterial endocarditis. In T. W. Post (Ed.), UpToDatehttps://www.uptodate.com/contents/antimicrobial-prophylaxis-for-the-prevention-of-bacterial-endocarditis

     

    How to Read an EKG Rhythm Strip

    How to Read an EKG Rhythm Strip

    This post may contain affiliate links, which means I get a commission if you decide to purchase through my links, at no cost to you. Please read affiliate disclosure for more information

    William J. Kelly, MSN, FNP-C
    William J. Kelly, MSN, FNP-C

    Author | Nurse Practitioner

    Learning how to read an EKG rhythm strip is an essential skill for nurses!

    This skill becomes especially handy for nurses on Med-Surg, Telemetry, the Emergency Department, or Critical Care units.

    If reading an EKG rhythm strip is new to you – this is the perfect place to start!

    How to read an EKG Rhythm Strip - FB Share

    What is a Rhythm Strip?

    An EKG or ECG stands for Electrocardiography, which is the electrical activity of the heart traced on paper (or a monitor).

    A rhythm strip is at least a 6-second tracing printed out on graph paper which shows activity from one or two leads.

    Leads are “views” of the heart. There are 12 leads that are traditionally obtained with a 12-lead EKG, but most portable and bedside monitors only monitor 3-5 leads at a time.

    Luckily – interpreting a single rhythm strip is much easier than a 12-lead EKG. Most rhythm strips are interpreted from Lead II as this gives a great view of the heart.

    The goal of reading an EKG rhythm strip is to determine the rate and rhythm of the patient. This is great for identifying baseline cardiac rhythm as well as any arrhythmias or ectopy that may occur (like a premature beat).

    A 12-lead EKG also looks at the rate and rhythm, but additionally gives nearly a complete 360° view of the heart.

    This means it can be used to assess for things like cardiac ischemia or infarction, conduction delays, and even enlarged chamber size.

    The ECG Rhythm Strip Tracing

    As I said earlier – an ECG Rhythm tracing is the electrical activity of the heart recorded on paper or a monitor.

    This is traditionally printed out on a 6-second strip. This can make it easy to determine the rate of an irregular rhythm if it is not given to you (count the complexes and multiply by 10).

    Thick black lines are printed every 3 seconds, so the distance between 3 black lines is equal to 6 seconds.

    As you can see, a printed ECG rhythm strip is comprised of boxes – both small boxes and large boxes. 5 small boxes make up one large box.

    Each small box is 1mm wide, signifying 0.04 seconds or 40 milliseconds (ms).

    Each large box is 5 small boxes, signifying 0.20 seconds or 200ms.

    This becomes important to remember when determining the rate of regular rhythms. The boxes and lines are also important in recognizing whether a rhythm is regular or irregular.

    The PQRST

    Okay so that covers the paper, but what about the actual tracings? That’s where the alphabet comes into play. By alphabet – I mean PQRST.

    An electrical tracing of the heart is made up of waves, lines, complexes, and intervals, and each of these represents specific conduction within the heart. This is the key to interpreting a rhythm strip.

    P WAVES

    P waves represent atrial depolarization. This means that the electrical signal that starts in the SA node (the normal pacemaker of the heart) is traveling through both atria (top chambers of the heart) during the P wave.

    A P wave should look smooth and upright in most leads including lead II.

    The 3 things you’ll want to specifically look for in P waves in a rhythm strip are:

    • Are there P waves before each QRS complex?
    • Are there any P waves that do not have a QRS complex that follows?
    • Do all the P waves look the same / have the same shape?

    Keeping these 3 questions in mind will help you determine where the rhythm originates from (i.e. the sinus node), if there are any potential extra beats, or if there could be certain heart blocks present.

    An inverted P wave means there is anterograde conduction to the atria (backwards direction). This means the electrical impulse originates from near, at, or below the AV node. Examples of this include Junctional rhythm, certain PACs, and PJCs.

    QRS COMPLEXES

    The QRS complex represents ventricular depolarization. This means that the electrical signal is traveling through both ventricles (the bottom chambers of the heart). In a healthy heart – this should correlate with the pulse.

    The QRS complex is actually made up of 1-3 waves, the Q wave, the R wave, and the S wave. Depending on which lead you look at and the specific heart, any combination of these waves may be present.

    In lead II, usually all three waves are present. This includes an initial downward deflection (Q wave), an upward deflection (R wave), followed by a downward deflection (S wave).

    The presence of a QRS complex indicates that the ventricles are receiving the electrical signal. These should follow shortly after a P wave in a sinus rhythm.

    The main abnormality that can occur is a wide QRS complex. This either means that there is aberrant conduction (like a bundle branch block), or that the electrical signal starts in either the left or right ventricle (i.e. a PVC or Ventricular Tachycardia).

    A bundle branch block just means there is a delay in the conduction tissue transmitting the signal to either the right or left ventricle. If the widened QRS is preceded by a P wave, it is probably a sinus rhythm with a BBB.

    If there is no preceding P wave, you may have a PVC or even VTACH if it is sustained.

    T WAVES

    The T wave represents ventricular repolarization. This means that the myocardial cells within the ventricles are recovering and “getting ready for the next beat”.

    This should be smooth and upright in most leads, including lead II.

    Sometimes, the T wave can be inverted or flipped. This is nonspecific but can indicate cardiac ischemia or infarction, especially if it is in at least 2 contiguous leads (pertaining to the same anatomical area of the heart).

    People may have flipped waves in certain leads at baseline after a heart attack, with a bundle branch block, or with a PVC, VTACH, or ventricular paced rhythms.

    Tall or tented T waves are those that are > 1 large box in lead II and may be particularly pointed. This could be normal for the patient, but can also indicate hyperkalemia (high potassium).

    PR INTERVAL

    The PR interval is from the beginning of the P wave to the beginning of the QRS complex. This represents the time it takes for the electrical signal to reach the ventricles from the SA node.

    This should be 3-5 small boxes or 120-200ms. If longer, this is considered a first degree AV block.

    A short PR interval could be from a a PAC, a junctional rhythm (associated with an inverted P wave), or Wolff-Parkinson-White syndrome.

    QT INTERVAL

    The QT interval is the time between the start of the QRS complex to the end of the T wave. This will change depending on the heart rate, so a QTc (QT corrected) is calculated.

    This should be 350-440ms in men, and 350-460ms in women. A QT interval >500ms predisposes the patient to deadly ventricular arrhythmias such as Torsades de Pointes.

    QT prolongation can be caused by ischemia, electrolyte abnormalities, or from medications such as psych medications, Zofran, Azithromycin, Cipro, etc.

    While you can calculate the QT interval from a single strip, a 12-lead EKG should be obtained and it will be listed on the EKG for you. Otherwise, there are online calculators which can be used to determine the corrected QT interval for the heart rate.

    Arrhythmias on the ECG Rhythm Strip

    An arrhythmia is any abnormal rhythm other than normal sinus rhythm – the baseline rhythm of the heart. This can be a benign variant (like sinus arrhythmia), or it could be deadly (like ventricular fibrillation).

    In order to know how to read an EKG rhythm strip, you need to first be able to understand what normal sinus rhythm (NSR) looks like.

    You should be comparing every rhythm strip to NSR. Recognizing where the rhythm differs from NSR will help you identify the rhythm.

    Normal Sinus Rhythm (NSR)

    Normal sinus rhythm is the gold standard. This is what a normal functioning heart beat should look like.

    The “sinus” in the name indicates that the electrical signal is coming from the Sinoatrial node (SA node), the “normal” pacemaker of the heart.

    The presence of sinus rhythm means the cardiac conduction system is functioning appropriately (although certain blocks may still be present).

    The rate of NSR is 60-100 bpm.  Slower is sinus bradycardia, and faster is sinus tachycardia. This just means that the heart is functioning at altered rates, possibly due to sleep, medications, infection, exercise, etc.

    All sinus rhythms should be regular, meaning each of the QRS complexes are mapping out.

    You can do this by measuring the R-R interval between any two beats, and then making sure the R-R interval stays constant throughout the strip. Some people use calipers, but I recommend a good old-fashioned alcohol pad or piece of paper and a pen.

    Additionally, a P wave should precede each QRS complex.

    The QRS complex should be narrow unless there is a bundle branch block present.

    The ECG Rhythm Strip Interpretation

    To read an EKG rhythm strip, you should do so in a systematic way, so that you don’t miss anything.

    1. Is the rhythm regular? Is every R-R interval equal?
    2. What’s the rate? This is usually printed for you
    3. P wave: Are there P waves before every QRS?
    4. PR interval: Is it wide >200ms?
    5. QRS: Is the QRS narrow or wide (>100-120ms)?
    6. T waves: Are the T waves upright and normal-appearing?

    Using this systematic approach should help you interpret what each rhythm is. But you need to be familiar with most of the arrhythmias out there.

    Systematic approach to reading a rhythm strip

    Other Sinus Rhythms

    Other sinus rhythms are rhythms that may still “normal”. I include paced rhythms in this section as this replaces NSR once a pacemaker is placed.

    Sinus Bradycardia (SB)

    Sinus bradycardia is the same as NSR, but the HR is <60bpm.

    This can be normal for well-conditioned individuals like athletes, can be normal if the patient is on a beta-blocker or similar medication, and can also be normal while sleeping.

    The most important thing when the patient has SB is

    1. Is it new or severe (<40bpm or so)
    2. Are they symptomatic? (dizziness, lightheadedness, syncope, SOB, chest pain, etc)

    Since this is often a normal variant – if the patient is asymptomatic there’s usually nothing that needs to be done.

    Make sure a slow HR is actually SB and not a heart block!

    Sinus Tachycardia (ST)

    Sinus tachycardia is the same as NSR, but the HR is >100bpm and usually <150bpm, at least while at rest.

    This can often be seen with exercise, but ST at rest often indicates anxiety, certain drugs, sepsis, dehydration, or volume loss. ST is usually a response to an underlying cause within the body.

    You never treat the ST, but rather treat the underlying issue (i.e. give fluids with volume depletion).

    Paced Rhythm

    Paced rhythms will look different depending on the location of the leads. If the lead is in the right atria, the rhythm will appear like NSR but with a pacer spike before the P wave.

    If the lead is in the right ventricle, it will look like a slow VTACH with a pacer spike before the QRS. There can also be both of these at the same time.

    Some monitors only show the pacer spike if you turn that function on – if you see a very slow VT – ask the patient if they have a pacemaker and adjust the monitors appropriately.

    Other Cardiac Arrhythmias

    Heart Blocks

    Heart blocks are when there is significant delay or blockage in transmitting the signal from the atria to the ventricles. This is usually associated with a junctional or ventricular escape rhythm.

    First degree AV block is generally “no big deal” and common in older age and with beta-blockers. The PR interval is consistently >200ms.

    Second degree type 1 AV block or Wenckebach, is when there is a progressive lengthening of the PR interval which eventually leads to a dropped QRS complex.

    Second degree type 2 AV block or Mobitz II is when there is a consistent PR interval but QRS complexes are randomly dropped.

    Third degree AV block or complete heart block is when there is complete dissociation of the atria and the ventricles.

    Atrial Fibrillation (AF)

    Atrial Fibrillation is a very common type of arrhythmia that you will definitely run into in the hospital. AF could be new-onset, RVR (rapid ventricular response), could be intermittent (paroxysmal), or chronic/persistent.

    AF is an irregularly irregular rhythm, meaning that there is no rhyme or reason for the regularity of each QRS complex.

    This is usually from a structurally diseased heart where both atria are quivering rapidly, termed fibrillation. This leads to fast ventricular rates (AF RVR), as well as poor blood flow through the atria – predisposing the patient to blood clots.

    This is why these patients are started on rate-control medications such as metoprolol or Cardizem, and usually anticoagulants like heparin, Eliquis, etc.

    AF will not have p waves but instead, have a fibrillatory baseline. The QRS complexes will usually be narrow, and will not map out with each other in any way.

    Rates >100bpm are considered AF RVR.

    Atrial Flutter

    Atrial Flutter (Aflutter) is similar to Atrial fibrillation and is treated largely the same.

    This is when the atria aren’t fibrillating but rather “fluttering”. This is usually from a reentrant loop near the AV node.

    This will usually lead to a conduction ratio of 2:1, and a HR around 150bpm. Conduction ratios can be 3:1 (100bpm), 4:1 (75bpm) and variable as well.

    You will see saw-tooth P waves termed “f waves”. Depending on the conduction ratio, you will see 2 (3 or 4) F waves per QRS complex. Aflutter is usually regular.

    Supraventricular Tachycardia (SVT)

    Supraventricular Tachycardia is an umbrella term referring to any fast tachycardia that originates above the ventricles. However, in clinical terms, this usually refers to AV Nodal Reentrant Tachycardia (AVNRT).

    This occurs when there is an abnormal pathway of conduction tissue near/within the AV node, termed a “reentrant loop”.

    If a PAC or PVC comes at the wrong time, this can send the electrical signal around and around this loop of conduction tissue, leading to very fast heart rates.

    SVT can be as “slow” as 140bpm to as fast as 220bpm. The faster the heart rate, the more symptomatic the patient usually is.

    In SVT, P waves are usually not present, there is usually ST depression, and the rhythm is regular with narrow QRS complexes.

    Treatment for this involves vagal maneuvers and often adenosine or Cardizem.

    Ventricular Tachycardia (VTACH or VT)

    Ventricular Tachycardia is a fast tachyarrhythmia originating within the ventricles. This leads to very fast heart rates with or without a perfusing rhythm.

    This means the patient may not have a pulse and may be a code blue. Either way, VT is a very serious arrhythmia.

    VT is usually caused by Coronary heart disease, like a previous or current MI.

    The rhythm is regular, and the rate is anywhere from 100-330bpm, and the QRS complex is wide (>140ms).

    P waves are usually absent or undetectable, but 60% of cases can have AV dissociation present.

    If there is no pulse, you use ACLS cardiac arrest algorithm.

    If there is a pulse, you utilize the ACLS Adult tachycardia with a pulse algorithm.

    Ventricular Fibrillation (VF or VFIB)

    Ventricular Fibrillation is a deadly ventricular arrhythmia. There will not be a pulse, and the patient will be coding.

    VF is a similar concept as AF, except the ventricles are the ones fibrillating. Coronary artery disease is again one of the main causes of VF. Severe electrolyte abnormalities can also cause VF.

    VF is irregular and has no pattern. There is either coarse or fine fibrillation, eventually degenerating into asystole if not shocked back into a normal rhythm.

    These patients need fast defibrillation, high-quality CPR, Epinephrine, antiarrhythmics, etc (Code blue algorithm).

    Asystole

    Asystole is the absence of cardiac activity. This is essentially a straight wavy line but may have occasional p waves initially. The patient is dead. Follow ACLS algorithms as above.

    Pulseless Electrical Activity (PEA)

    PEA appears like a normal rhythm (Usually NSR or SB), but there is no actual mechanical contraction (no pulse). The patient will be unresponsive, pulseless, and this is a code blue as well (follow ACLS).

    Want to learn more?

    Hopefully this gave you a good idea about how to read an EKG rhythm strip. Unfortunately, I couldn’t include every single arrhythmia or detail, but this definitely should give you a good understanding of the basics!

    If you want to learn more, I have a complete video course “ECG Rhythm Master”, made specifically for nurses which goes into so much more depth and detail.

    With this course you will be able to:

    • Identify all cardiac rhythms inside and out
    • Understand the pathophysiology of why and how arrhythmias occur
    • Learn how to manage arrhythmias like an expert nurse
    • Become proficient with emergency procedures like transcutaneous pacing, defibrillation, synchronized shock, and more!

    I also include some great free bonuses with the course, including:

    • ECG Rhythm Guide eBook (190 pages!)
    • Code Cart Med Guide (code cart medication guide)
    • Code STEMI (recognizing STEMI on an EKG)

    You can use the code “SPRING2021” for a limited time 15% discount, exclusive to my readers!

    Check out more about the course here!

    You may also like:

    Heart Blocks EKG Rhythm Infographic
    How to read an EKG Rhythm Strip - Pin Share